Biembeddings of Latin squares obtained from a voltage construction
暂无分享,去创建一个
[1] Vladimir P. Korzhik,et al. Exponential Families of Non-isomorphic Non-triangular Orientable Genus Embeddings of Complete Graphs , 2002, J. Comb. Theory, Ser. B.
[2] G. Ringel. Map Color Theorem , 1974 .
[3] Mike J. Grannell,et al. A lower bound for the number of orientable triangular embeddings of some complete graphs , 2010, J. Comb. Theory, Ser. B.
[4] Vladimir P. Korzhik,et al. Exponential families of nonisomorphic nonorientable genus embeddings of complete graphs , 2004, J. Comb. Theory, Ser. B.
[5] Mike J. Grannell,et al. A Construction for Biembeddings of Latin Squares , 2011, Electron. J. Comb..
[6] Vladimir P. Korzhik. Exponentially many nonisomorphic orientable triangular embeddings of K12s , 2008, Discret. Math..
[7] Mike J. Grannell,et al. A lower bound for the number of triangular embeddings of some complete graphs and complete regular tripartite graphs , 2008, J. Comb. Theory, Ser. B.
[8] Mike J. Grannell,et al. Recursive constructions for triangulations , 2002, J. Graph Theory.
[9] Jonathan L. Gross,et al. Topological Graph Theory , 1987, Handbook of Graph Theory.
[10] Mike J. Grannell,et al. Triangulations of orientable surfaces by complete tripartite graphs , 2006, Discret. Math..
[11] Vladimir P. Korzhik,et al. On the Number of Nonisomorphic Orientable Regular Embeddings of Complete Graphs , 2001, J. Comb. Theory, Ser. B.
[12] C. Colbourn,et al. The CRC handbook of combinatorial designs , edited by Charles J. Colbourn and Jeffrey H. Dinitz. Pp. 784. $89.95. 1996. ISBN 0-8493-8948-8 (CRC). , 1997, The Mathematical Gazette.
[13] Vladimir P. Korzhik,et al. Exponentially many nonisomorphic orientable triangular embeddings of K12s+3 , 2009, Discret. Math..
[14] Mike J. Grannell,et al. Exponential Families of Non-Isomorphic Triangulations of Complete Graphs , 2000, J. Comb. Theory, Ser. B.
[15] Mike J. Grannell,et al. BIEMBEDDINGS OF LATIN SQUARES AND HAMILTONIAN DECOMPOSITIONS , 2004, Glasgow Mathematical Journal.