Biembeddings of Latin squares obtained from a voltage construction

We investigate a voltage construction for face $2$-colourable triangulations by $K_{n,n,n}$ from the viewpoint of the underlying Latin squares. We prove that if the vertices are relabelled so that one of the Latin squares is exactly the Cayley table $C_n$ of the group $\mathbb Z_n$, then the other square can be obtained from $C_n$ by a cyclic permutation of row, column or entry identifiers, and we identify these cyclic permutations. As an application, we improve the previously known lower bound for the number of nonisomorphic triangulations by $K_{n,n,n}$ obtained from the voltage construction in the case when $n$ is a prime number.

[1]  Vladimir P. Korzhik,et al.  Exponential Families of Non-isomorphic Non-triangular Orientable Genus Embeddings of Complete Graphs , 2002, J. Comb. Theory, Ser. B.

[2]  G. Ringel Map Color Theorem , 1974 .

[3]  Mike J. Grannell,et al.  A lower bound for the number of orientable triangular embeddings of some complete graphs , 2010, J. Comb. Theory, Ser. B.

[4]  Vladimir P. Korzhik,et al.  Exponential families of nonisomorphic nonorientable genus embeddings of complete graphs , 2004, J. Comb. Theory, Ser. B.

[5]  Mike J. Grannell,et al.  A Construction for Biembeddings of Latin Squares , 2011, Electron. J. Comb..

[6]  Vladimir P. Korzhik Exponentially many nonisomorphic orientable triangular embeddings of K12s , 2008, Discret. Math..

[7]  Mike J. Grannell,et al.  A lower bound for the number of triangular embeddings of some complete graphs and complete regular tripartite graphs , 2008, J. Comb. Theory, Ser. B.

[8]  Mike J. Grannell,et al.  Recursive constructions for triangulations , 2002, J. Graph Theory.

[9]  Jonathan L. Gross,et al.  Topological Graph Theory , 1987, Handbook of Graph Theory.

[10]  Mike J. Grannell,et al.  Triangulations of orientable surfaces by complete tripartite graphs , 2006, Discret. Math..

[11]  Vladimir P. Korzhik,et al.  On the Number of Nonisomorphic Orientable Regular Embeddings of Complete Graphs , 2001, J. Comb. Theory, Ser. B.

[12]  C. Colbourn,et al.  The CRC handbook of combinatorial designs , edited by Charles J. Colbourn and Jeffrey H. Dinitz. Pp. 784. $89.95. 1996. ISBN 0-8493-8948-8 (CRC). , 1997, The Mathematical Gazette.

[13]  Vladimir P. Korzhik,et al.  Exponentially many nonisomorphic orientable triangular embeddings of K12s+3 , 2009, Discret. Math..

[14]  Mike J. Grannell,et al.  Exponential Families of Non-Isomorphic Triangulations of Complete Graphs , 2000, J. Comb. Theory, Ser. B.

[15]  Mike J. Grannell,et al.  BIEMBEDDINGS OF LATIN SQUARES AND HAMILTONIAN DECOMPOSITIONS , 2004, Glasgow Mathematical Journal.