Deterministic polarization chaos from a laser diode

Theoretically a convergence of the GP algorithm is sufficient to demonstrate chaos and estimate its finite correlation dimension. However it has been reported that in some cases where the experimental time-series are perturbed by coloured noises, the computed correlation dimension from GP algorithm may be finite although the dynamics is not deterministic chaos . This is particularly true since, due to physical and/or technological and/or numerical limitations, the analyzed time-series are short and noisy and the GP algorithm can be fooled by peculiar noisy dataset. However the flaws can be addressed by performing few additional tests as suggested by Provenzale et al. SUPPLEMENTARY INFORMATION DOI: 10.1038/NPHOTON.2012.286

[1]  Leonard A. Smith,et al.  Distinguishing between low-dimensional dynamics and randomness in measured time series , 1992 .

[2]  Wolfgang Kinzel,et al.  Observing chaos for quantum-dot microlasers with external feedback. , 2011, Nature communications.

[3]  Marc Timme,et al.  Self-organized adaptation of a simple neural circuit enables complex robot behaviour , 2011, ArXiv.

[4]  H. Ohno,et al.  Mobility dependence of electron spin relaxation time in n-type InGaAs/InAlAs multiple quantum wells , 2000 .

[5]  Hugo Thienpont,et al.  Polarization switching and polarization mode hopping in quantum dot vertical-cavity surface-emitting lasers. , 2011, Optics express.

[6]  Klaus Fraedrich,et al.  Estimating the correlation dimension of an attractor from noisy and small datasets based on re-embedding , 1993 .

[7]  Hübner,et al.  Homoclinic and heteroclinic chaos in a single-mode laser. , 1988, Physical review letters.

[8]  Period-doubling bifurcations in detuned lasers with injected signals , 1984 .

[9]  Salvador Balle,et al.  Experimental and theoretical investigations on elliptically polarized dynamical transition states in the polarization switching of vertical-cavity surface-emitting lasers , 2004 .

[10]  Vassilios Kovanis,et al.  Period‐doubling route to chaos in a semiconductor laser subject to optical injection , 1994 .

[11]  M. Sciamanna,et al.  Polarization synchronization in unidirectionally coupled vertical-cavity surface-emitting lasers with orthogonal optical injection. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[12]  F. Arecchi,et al.  Experimental evidence of subharmonic bifurcations, multistability, and turbulence in a Q-switched gas laser , 1982 .

[13]  S. Bigo,et al.  Linear Fiber Impairments Mitigation of 40-Gbit/s Polarization-Multiplexed QPSK by Digital Processing in a Coherent Receiver , 2008, Journal of Lightwave Technology.

[14]  I. Kanter,et al.  An optical ultrafast random bit generator , 2010 .

[15]  A. Wolf,et al.  Determining Lyapunov exponents from a time series , 1985 .

[16]  E. Lorenz Deterministic nonperiodic flow , 1963 .

[17]  D S Citrin,et al.  Loss of time-delay signature in the chaotic output of a semiconductor laser with optical feedback. , 2007, Optics letters.

[18]  Mukai,et al.  New route to optical chaos: Successive-subharmonic-oscil- lation cascade in a semiconductor laser coupled to an external cavity. , 1985, Physical review letters.

[19]  A Garfinkel,et al.  Controlling cardiac chaos. , 1992, Science.

[20]  Perry Ping Shum,et al.  Performance of optical chaotic communication systems using multimode vertical cavity surface emitting lasers , 2001 .

[21]  A. Uchida,et al.  Fast physical random bit generation with chaotic semiconductor lasers , 2008 .

[22]  Henning Höpfner,et al.  Ultrafast spin-induced polarization oscillations with tunable lifetime in vertical-cavity surface-emitting lasers , 2011 .

[23]  Ido Kanter,et al.  Utilizing hidden Markov processes as a tool for experimental physics , 2005 .

[24]  Rainer Michalzik,et al.  Optical spin manipulation of electrically pumped vertical-cavity surface-emitting lasers , 2008 .

[25]  Hermann Haken,et al.  Analogy between higher instabilities in fluids and lasers , 1975 .

[26]  R. Johnsen,et al.  Theory and Experiment , 2010 .

[27]  Lawrence R. Rabiner,et al.  A tutorial on hidden Markov models and selected applications in speech recognition , 1989, Proc. IEEE.

[28]  Romain Modeste Nguimdo,et al.  Digital key for chaos communication performing time delay concealment. , 2011, Physical review letters.

[29]  Steven H. Strogatz,et al.  Ordering chaos with disorder , 1995, Nature.

[30]  J. Buldú,et al.  Demultiplexing chaos from multimode semiconductor lasers , 2005, IEEE Journal of Quantum Electronics.

[31]  Roy,et al.  Communication with chaotic lasers , 1998, Science.

[32]  R. Graham,et al.  Chaos in a Laser System under a Modulated External Field , 1980 .

[33]  Neal B. Abraham,et al.  Polarization properties of vertical-cavity surface-emitting lasers , 1997 .

[34]  P. Grassberger,et al.  Characterization of Strange Attractors , 1983 .

[35]  H. Kawaguchi Optical bistability and chaos in a semiconductor laser with a saturable absorber , 1984 .

[36]  J. Yorke,et al.  Period Three Implies Chaos , 1975 .

[37]  F. T. Arecchi,et al.  Instabilities in lasers with an injected signal , 1985 .

[38]  Pere Colet,et al.  Phase synchronization and polarization ordering of globally coupled oscillators. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[39]  P. Grassberger,et al.  Estimation of the Kolmogorov entropy from a chaotic signal , 1983 .

[40]  Laurent Larger,et al.  Chaos-based communications at high bit rates using commercial fibre-optic links , 2005, Nature.

[41]  San Miguel M,et al.  Light-polarization dynamics in surface-emitting semiconductor lasers. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[42]  A. Provenzale,et al.  Finite correlation dimension for stochastic systems with power-law spectra , 1989 .

[43]  Ingo Fischer,et al.  Dynamics of a semiconductor laser with polarization-rotated feedback and its utilization for random bit generation. , 2011, Optics letters.

[44]  Rajarshi Roy,et al.  Communication with dynamically fluctuating states of light polarization. , 2002, Physical review letters.

[45]  D. S. Coffey Self-organization, complexity and chaos: The new biology for medicine , 1998, Nature Medicine.

[46]  Rajarshi Roy,et al.  Chaos in a multimode solid-state laser system. , 1991, Chaos.