Analog Electronic Implementation of a Class of Hybrid Dissipative Dynamical System

An analog electronic implementation by means of operational amplifiers of a class of hybrid dissipative systems in R3 is presented. The switching systems have two unstable hyperbolic focus-saddle equilibria with the same stability index, a positive real eigenvalue and a pair of complex conjugated eigenvalues with negative real part. The analog circuit generates signals that oscillate in an attractor located between the two unstable equilibria, and may present saturation states at the moment of energizing it, i.e. if the initial voltage on the capacitors do not belong to the basin of attraction the circuit will end on a saturation state.

[1]  Pekka Orponen,et al.  A Survey of Continous-Time Computation Theory , 1997, Advances in Algorithms, Languages, and Complexity.

[2]  Cuomo,et al.  Circuit implementation of synchronized chaos with applications to communications. , 1993, Physical review letters.

[3]  H. Siegelmann,et al.  Analog computation with dynamical systems , 1998 .

[4]  I. Campos-Cantón,et al.  A parameterized family of single-double-triple-scroll chaotic oscillations , 2008 .

[5]  J. Suykens,et al.  Generation of n-double scrolls (n=1, 2, 3, 4,...) , 1993 .

[6]  Johan A. K. Suykens,et al.  Families of scroll Grid attractors , 2002, Int. J. Bifurc. Chaos.

[7]  Eugene M Izhikevich,et al.  Hybrid spiking models , 2010, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[8]  R. Sanfelice,et al.  Hybrid dynamical systems , 2009, IEEE Control Systems.

[9]  Ahmed S. Elwakil,et al.  A Four-Wing Butterfly Attractor from a Fully Autonomous System , 2003, Int. J. Bifurc. Chaos.

[10]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[11]  Ricardo Femat,et al.  Attractors generated from switching unstable dissipative systems. , 2012, Chaos.

[12]  K. Aihara,et al.  Analog computation through high-dimensional physical chaotic neuro-dynamics , 2008 .

[13]  Michael V. Basin,et al.  A family of hyperchaotic multi-scroll attractors in Rn , 2014, Appl. Math. Comput..

[14]  Takashi Matsumoto,et al.  A chaotic attractor from Chua's circuit , 1984 .

[15]  A. S. ELWAKIL,et al.  A System and Circuit for Generating "multi-Butterflies" , 2008, Int. J. Bifurc. Chaos.

[16]  R Femat,et al.  Multiscroll attractors by switching systems. , 2010, Chaos.

[17]  Guanrong Chen,et al.  The generation and circuit implementation of a new hyper-chaos based upon Lorenz system , 2007 .

[18]  Dmitry E. Postnov,et al.  SYNCHRONIZATION OF CHAOS , 1992 .

[19]  M. A. Aziz-Alaoui,et al.  Synchronization of Chaos , 2006 .

[20]  A. Wolf,et al.  Determining Lyapunov exponents from a time series , 1985 .

[21]  E. Lorenz Deterministic nonperiodic flow , 1963 .

[22]  Kazuyuki Aihara,et al.  Piecewise affine systems modelling for optimizing hormone therapy of prostate cancer , 2010, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[23]  Hideyuki Suzuki,et al.  Theory of hybrid dynamical systems and its applications to biological and medical systems , 2010, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[24]  Xinghuo Yu,et al.  Generating Grid Multiwing Chaotic Attractors by Constructing Heteroclinic Loops Into Switching Systems , 2011, IEEE Transactions on Circuits and Systems II: Express Briefs.

[25]  Guanrong Chen,et al.  Analysis and circuit implementation of a new 4D chaotic system , 2006 .