A Fast and Accurate FFT-Based Method for Pricing Early-Exercise Options under L[e-acute]vy Processes
暂无分享,去创建一个
Cornelis W. Oosterlee | Fang Fang | F. Bervoets | R. Lord | R. Lord | C. Oosterlee | F. Fang | F. Bervoets
[1] Ken-iti Sato. Basic Results on Lévy Processes , 2001 .
[2] D. Duffie,et al. Transform Analysis and Asset Pricing for Affine Jump-Diffusions , 1999 .
[3] Alan L. Lewis. A Simple Option Formula for General Jump-Diffusion and Other Exponential Levy Processes , 2001 .
[4] S. Raible,et al. Lévy Processes in Finance: Theory, Numerics, and Empirical Facts , 2000 .
[5] C. Oosterlee,et al. On American Options Under the Variance Gamma Process , 2007 .
[6] Evis Këllezi,et al. Valuing Bermudan options when asset returns are Lévy processes , 2004 .
[7] S. Heston. A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options , 1993 .
[8] Cornelis W. Oosterlee,et al. Highly accurate evaluation of European and American options under the Variance Gamma process , 2006 .
[9] J. Gurland. Inversion Formulae for the Distribution of Ratios , 1948 .
[10] D. Duffie,et al. Affine Processes and Application in Finance , 2002 .
[11] D. Madan,et al. Pricing American options under variance gamma , 2003 .
[12] P. Carr,et al. The Variance Gamma Process and Option Pricing , 1998 .
[13] George Labahn,et al. A penalty method for American options with jump diffusion processes , 2004, Numerische Mathematik.
[14] C. Schwab,et al. Wavelet Galerkin pricing of American options on Lévy driven assets , 2005 .
[15] Qing Huo Liu,et al. Fast Fourier transform for discontinuous functions , 2004 .
[16] P. Iseger. NUMERICAL TRANSFORM INVERSION USING GAUSSIAN QUADRATURE , 2005, Probability in the Engineering and Informational Sciences.
[17] Steven Kou,et al. A Jump Diffusion Model for Option Pricing , 2001, Manag. Sci..
[18] Desmond J. Higham,et al. An Introduction to Financial Option Valuation , 2004 .
[19] Jari Toivanen,et al. Numerical Valuation of European and American Options under Kou's Jump-Diffusion Model , 2008, SIAM J. Sci. Comput..
[20] Harvey Dubner,et al. Numerical Inversion of Laplace Transforms by Relating Them to the Finite Fourier Cosine Transform , 1968, JACM.
[21] Cornelis W. Oosterlee,et al. Accurate Evaluation of European and American Options Under the CGMY Process , 2007, SIAM J. Sci. Comput..
[22] Antoon Pelsser,et al. Markov-Functional Interest Rate Models , 1999 .
[23] S. Levendorskii,et al. Non-Gaussian Merton-Black-Scholes theory , 2002 .
[24] M. Yor,et al. The Fine Structure of Asset Retums : An Empirical Investigation ' , 2006 .
[25] R. Lord,et al. Optimal Fourier Inversion in Semi-Analytical Option Pricing , 2007 .
[26] Cornelis W. Oosterlee,et al. Multi-asset option pricing using a parallel Fourier-based technique , 2008 .
[27] Y. Yamamoto,et al. A Double-Exponential Fast Gauss Transform Algorithm for Pricing Discrete Path-Dependent Options , 2005, Oper. Res..
[28] Jesper Andreasen,et al. Jump-Diffusion Processes: Volatility Smile Fitting and Numerical Methods for Pricing , 1999 .
[29] R. Cont,et al. Financial Modelling with Jump Processes , 2003 .
[30] Iris R. Wang,et al. Robust numerical valuation of European and American options under the CGMY process , 2007 .
[31] P. Carr,et al. Option valuation using the fast Fourier transform , 1999 .
[32] R. Maller,et al. A MULTINOMIAL APPROXIMATION FOR AMERICAN OPTION PRICES IN LÉVY PROCESS MODELS , 2006 .
[33] Ward Whitt,et al. The Fourier-series method for inverting transforms of probability distributions , 1992, Queueing Syst. Theory Appl..
[34] Kyriakos Chourdakis. Switching Levy Models in Continuous Time: Finite Distributions and Option Pricing , 2005 .
[35] S. Howison,et al. A Matched Asymptotic Expansions Approach to Continuity Corrections for Discretely Sampled Options. Part 1: Barrier Options , 2007 .