A Fast and Accurate FFT-Based Method for Pricing Early-Exercise Options under L[e-acute]vy Processes

A fast and accurate method for pricing early exercise and certain exotic options in computational finance is presented. The method is based on a quadrature technique and relies heavily on Fourier transformations. The main idea is to reformulate the well-known risk-neutral valuation formula by recognizing that it is a convolution. The resulting convolution is dealt with numerically by using the fast Fourier transform. This novel pricing method, which we dub the convolution method, is applicable to a wide variety of payoffs and requires only the knowledge of the characteristic function of the model. As such, the method is applicable within many regular affine models, among which is the class of exponential Levy models. For an $M$-times exercisable Bermudan option, the overall complexity is $O(MN\log_2(N))$, with $N$ grid points used to discretize the price of the underlying asset. American options are priced efficiently by applying Richardson extrapolation to the prices of Bermudan options.

[1]  Ken-iti Sato Basic Results on Lévy Processes , 2001 .

[2]  D. Duffie,et al.  Transform Analysis and Asset Pricing for Affine Jump-Diffusions , 1999 .

[3]  Alan L. Lewis A Simple Option Formula for General Jump-Diffusion and Other Exponential Levy Processes , 2001 .

[4]  S. Raible,et al.  Lévy Processes in Finance: Theory, Numerics, and Empirical Facts , 2000 .

[5]  C. Oosterlee,et al.  On American Options Under the Variance Gamma Process , 2007 .

[6]  Evis Këllezi,et al.  Valuing Bermudan options when asset returns are Lévy processes , 2004 .

[7]  S. Heston A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options , 1993 .

[8]  Cornelis W. Oosterlee,et al.  Highly accurate evaluation of European and American options under the Variance Gamma process , 2006 .

[9]  J. Gurland Inversion Formulae for the Distribution of Ratios , 1948 .

[10]  D. Duffie,et al.  Affine Processes and Application in Finance , 2002 .

[11]  D. Madan,et al.  Pricing American options under variance gamma , 2003 .

[12]  P. Carr,et al.  The Variance Gamma Process and Option Pricing , 1998 .

[13]  George Labahn,et al.  A penalty method for American options with jump diffusion processes , 2004, Numerische Mathematik.

[14]  C. Schwab,et al.  Wavelet Galerkin pricing of American options on Lévy driven assets , 2005 .

[15]  Qing Huo Liu,et al.  Fast Fourier transform for discontinuous functions , 2004 .

[16]  P. Iseger NUMERICAL TRANSFORM INVERSION USING GAUSSIAN QUADRATURE , 2005, Probability in the Engineering and Informational Sciences.

[17]  Steven Kou,et al.  A Jump Diffusion Model for Option Pricing , 2001, Manag. Sci..

[18]  Desmond J. Higham,et al.  An Introduction to Financial Option Valuation , 2004 .

[19]  Jari Toivanen,et al.  Numerical Valuation of European and American Options under Kou's Jump-Diffusion Model , 2008, SIAM J. Sci. Comput..

[20]  Harvey Dubner,et al.  Numerical Inversion of Laplace Transforms by Relating Them to the Finite Fourier Cosine Transform , 1968, JACM.

[21]  Cornelis W. Oosterlee,et al.  Accurate Evaluation of European and American Options Under the CGMY Process , 2007, SIAM J. Sci. Comput..

[22]  Antoon Pelsser,et al.  Markov-Functional Interest Rate Models , 1999 .

[23]  S. Levendorskii,et al.  Non-Gaussian Merton-Black-Scholes theory , 2002 .

[24]  M. Yor,et al.  The Fine Structure of Asset Retums : An Empirical Investigation ' , 2006 .

[25]  R. Lord,et al.  Optimal Fourier Inversion in Semi-Analytical Option Pricing , 2007 .

[26]  Cornelis W. Oosterlee,et al.  Multi-asset option pricing using a parallel Fourier-based technique , 2008 .

[27]  Y. Yamamoto,et al.  A Double-Exponential Fast Gauss Transform Algorithm for Pricing Discrete Path-Dependent Options , 2005, Oper. Res..

[28]  Jesper Andreasen,et al.  Jump-Diffusion Processes: Volatility Smile Fitting and Numerical Methods for Pricing , 1999 .

[29]  R. Cont,et al.  Financial Modelling with Jump Processes , 2003 .

[30]  Iris R. Wang,et al.  Robust numerical valuation of European and American options under the CGMY process , 2007 .

[31]  P. Carr,et al.  Option valuation using the fast Fourier transform , 1999 .

[32]  R. Maller,et al.  A MULTINOMIAL APPROXIMATION FOR AMERICAN OPTION PRICES IN LÉVY PROCESS MODELS , 2006 .

[33]  Ward Whitt,et al.  The Fourier-series method for inverting transforms of probability distributions , 1992, Queueing Syst. Theory Appl..

[34]  Kyriakos Chourdakis Switching Levy Models in Continuous Time: Finite Distributions and Option Pricing , 2005 .

[35]  S. Howison,et al.  A Matched Asymptotic Expansions Approach to Continuity Corrections for Discretely Sampled Options. Part 1: Barrier Options , 2007 .