Near-surface damage and mixing in Si-Cl2-Ar atomic layer etching processes: Insights from molecular dynamics simulations

Silicon-chlorine-argon (Si-Cl2-Ar) atomic layer etching (ALE) is simulated using classical molecular dynamics (MD). The simulations provide a detailed view into the near-surface region during ALE processing. Bombardment of Ar+ ions creates a mixed amorphous region that significantly differs from the picture of ideal ALE. There is also a significant change in the Si etch yield and the etch product distribution as a function of Ar+ ion fluence. The Si etch yield is the highest at the beginning of the bombardment step but eventually decays to the physical sputtering yield. Atomic Cl and silicon chlorides are major etch products at the start of an ion bombardment step, but quickly decay. Atomic Si yields remain relatively constant as a function of Ar+ ion fluence. A new schematic of Si-Cl2-Ar ALE is presented in order to emphasize the complex behavior observed in MD simulations.

[1]  V. M. Donnelly,et al.  Real-time monitoring of atomic layer etching in Cl2/Ar pulsed gas, pulsed power plasmas by optical emission spectroscopy , 2023, Journal of Vacuum Science & Technology A.

[2]  D. Kim,et al.  Atomic Layer Etching Applications in Nano-Semiconductor Device Fabrication , 2023, Electronic Materials Letters.

[3]  D. Graves,et al.  Modification of a force field for molecular dynamics simulations of silicon etching by chlorine atoms , 2022, Journal of Vacuum Science & Technology A.

[4]  K. Karahashi,et al.  Foundations of atomic-level plasma processing in nanoelectronics , 2022, Plasma Sources Science and Technology.

[5]  D. Graves,et al.  Molecular dynamics study of silicon atomic layer etching by chorine gas and argon ions , 2022, Journal of Vacuum Science & Technology B.

[6]  S. Hamaguchi,et al.  Surface damage formation during atomic layer etching of silicon with chlorine adsorption , 2021, Journal of Vacuum Science & Technology A.

[7]  R. Gottscho,et al.  Atomic Layer Etching: Rethinking the Art of Etch. , 2018, The journal of physical chemistry letters.

[8]  Jane P. Chang,et al.  Achieving atomistic control in materials processing by plasma–surface interactions , 2017 .

[9]  S. Sriraman,et al.  Atomic layer etching of 3D structures in silicon: Self-limiting and nonideal reactions , 2017 .

[10]  R. Gottscho,et al.  Overview of atomic layer etching in the semiconductor industry , 2015 .

[11]  W. Kessels,et al.  Amorphization of Si(100) by Ar+-ion bombardment studied with spectroscopic and time-resolved second-harmonic generation , 2010 .

[12]  D. Humbird,et al.  Molecular dynamics simulations of Ar + bombardment of Si with comparison to experiment , 2007 .

[13]  G. Yeom,et al.  Surface Analysis of Atomic-Layer-Etched Silicon by Chlorine , 2007 .

[14]  W. Kessels,et al.  Amorphous silicon layer characteristics during 70-2000 eV Ar+-ion bombardment of Si(100) , 2006 .

[15]  G. Yeom,et al.  Surface Roughness Variation during Si Atomic Layer Etching by Chlorine Adsorption Followed by an Ar Neutral Beam Irradiation , 2005 .

[16]  D. Lee,et al.  Atomic Layer Etching of Si(100) and Si(111) Using Cl2 and Ar Neutral Beam , 2005 .

[17]  Lourdes Pelaz,et al.  Ion-beam-induced amorphization and recrystallization in silicon , 2004 .

[18]  D. Graves,et al.  Improved interatomic potentials for silicon-fluorine and silicon-chlorine. , 2004, The Journal of chemical physics.

[19]  Donald W. Brenner,et al.  A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons , 2002 .

[20]  Y. Yamamura,et al.  ENERGY DEPENDENCE OF ION-INDUCED SPUTTERING YIELDS FROM MONATOMIC SOLIDS AT NORMAL INCIDENCE , 1996 .

[21]  Y. Sawada,et al.  Substrate orientation dependence of self-limited atomic-layer etching of Si with chlorine adsorption and low-energy Ar+ irradiation , 1994 .

[22]  Y. Sawada,et al.  Self‐limited layer‐by‐layer etching of Si by alternated chlorine adsorption and Ar+ ion irradiation , 1993 .

[23]  C. Vieu,et al.  Cross‐sectional high‐resolution electron microscopy investigation of argon‐ion implantation‐induced amorphization of silicon , 1988 .

[24]  D. J. Oostra,et al.  Near threshold sputtering of Si and SiO2 in a Cl2 environment , 1987 .

[25]  H. Berendsen,et al.  Molecular dynamics with coupling to an external bath , 1984 .

[26]  P. Zalm Some useful yield estimates for ion beam sputtering and ion plating at low bombarding energies , 1984 .

[27]  T. Lohner,et al.  An investigation of ion-bombarded silicon by ellipsometry and channeling effect , 1982 .

[28]  A. Silfhout,et al.  The influence of argon ion bombardment on the electrical and optical properties of clean silicon surfaces , 1981 .

[29]  G. Müller,et al.  The crystalline-to-amorphous transition in ion-bombarded silicon , 1980 .

[30]  Gert Moliere,et al.  Theorie der Streuung schneller geladener Teilchen I. Einzelstreuung am abgeschirmten Coulomb-Feld , 1947 .

[31]  Hcm Harm Knoops,et al.  Atomic Layer Etching: What Can We Learn from Atomic Layer Deposition? , 2015 .

[32]  G. Oehrlein,et al.  Atomic Layer Etching at the Tipping Point: An Overview , 2015 .

[33]  Patricio E. Romero,et al.  Atomic Layer Etching: An Industry Perspective , 2015 .

[34]  A. Stukowski Modelling and Simulation in Materials Science and Engineering Visualization and analysis of atomistic simulation data with OVITO – the Open Visualization Tool , 2009 .

[35]  F. Morehead,et al.  Formation of Amorphous Silicon by Ion Bombardment as a Function of Ion, Temperature, and Dose , 1972 .

[36]  R. S. Nelson,et al.  Observation of ion bombardment damage in silicon , 1968 .