Matern Gaussian processes on Riemannian manifolds

Gaussian processes are an effective model class for learning unknown functions, particularly in settings where accurately representing predictive uncertainty is of key importance. Motivated by applications in the physical sciences, the widely-used Matern class of Gaussian processes has recently been generalized to model functions whose domains are Riemannian manifolds, by re-expressing said processes as solutions of stochastic partial differential equations. In this work, we propose techniques for computing the kernels of these processes via spectral theory of the Laplace--Beltrami operator in a fully constructive manner, thereby allowing them to be trained via standard scalable techniques such as inducing point methods. We also extend the generalization from the Matern to the widely-used squared exponential Gaussian process. By allowing Riemannian Matern Gaussian processes to be trained using well-understood techniques, our work enables their use in mini-batch, online, and non-conjugate settings, and makes them more accessible to machine learning practitioners.

[1]  Søren Hauberg,et al.  Open Problem: Kernel methods on manifolds and metric spaces. What is the probability of a positive definite geodesic exponential kernel? , 2016, COLT.

[2]  Michalis K. Titsias,et al.  Variational Learning of Inducing Variables in Sparse Gaussian Processes , 2009, AISTATS.

[3]  I. S. Gradshteyn,et al.  Table of Integrals, Series, and Products , 1976 .

[4]  E. Stein,et al.  Introduction to Fourier Analysis on Euclidean Spaces. , 1971 .

[5]  Arno Solin,et al.  Hilbert space methods for reduced-rank Gaussian process regression , 2014, Stat. Comput..

[6]  Thomas B. Schön,et al.  Modeling and Interpolation of the Ambient Magnetic Field by Gaussian Processes , 2015, IEEE Transactions on Robotics.

[7]  Benjamin Recht,et al.  Random Features for Large-Scale Kernel Machines , 2007, NIPS.

[8]  Christophe Geuzaine,et al.  Gmsh: A 3‐D finite element mesh generator with built‐in pre‐ and post‐processing facilities , 2009 .

[9]  Carl E. Rasmussen,et al.  Gaussian processes for machine learning , 2005, Adaptive computation and machine learning.

[10]  A. Mukherjea,et al.  Real and Functional Analysis , 1978 .

[11]  Milton Abramowitz,et al.  Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables , 1964 .

[12]  Andrew T. T. McRae,et al.  Firedrake: automating the finite element method by composing abstractions , 2015, ACM Trans. Math. Softw..

[13]  D. Owen Handbook of Mathematical Functions with Formulas , 1965 .

[14]  Carl E. Rasmussen,et al.  Gaussian Processes for Data-Efficient Learning in Robotics and Control , 2015, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[15]  Lorenzo Rosasco,et al.  Reproducing kernel Hilbert spaces on manifolds: Sobolev and Diffusion spaces , 2019, Analysis and Applications.

[16]  R. Strichartz Analysis of the Laplacian on the Complete Riemannian Manifold , 1983 .

[17]  A. Grigor’yan Heat Kernel and Analysis on Manifolds , 2012 .

[18]  Mark S. C. Reed,et al.  Method of Modern Mathematical Physics , 1972 .

[19]  Carolyn S. Gordon Chapter 6 – Survey of Isospectral Manifolds , 2000 .

[20]  Sylvain Calinon,et al.  Gaussians on Riemannian Manifolds for Robot Learning and Adaptive Control , 2019, ArXiv.

[21]  Søren Hauberg,et al.  Geodesic exponential kernels: When curvature and linearity conflict , 2014, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[22]  Bernhard Schölkopf,et al.  Learning with kernels , 2001 .

[23]  Neil D. Lawrence,et al.  Gaussian Processes for Big Data , 2013, UAI.

[24]  G. Camps-Valls,et al.  A Survey on Gaussian Processes for Earth-Observation Data Analysis: A Comprehensive Investigation , 2016, IEEE Geoscience and Remote Sensing Magazine.

[25]  S. Zelditch,et al.  Eigenfunctions of the Laplacian on a Riemannian manifold , 2017 .

[26]  Montserrat Fuentes,et al.  Isotropic covariance functions on spheres: Some properties and modeling considerations , 2016, J. Multivar. Anal..

[27]  David Bolin,et al.  Numerical solution of fractional elliptic stochastic PDEs with spatial white noise , 2017, IMA Journal of Numerical Analysis.

[28]  Arno Solin,et al.  Variational Fourier Features for Gaussian Processes , 2016, J. Mach. Learn. Res..

[29]  H. Rue,et al.  An explicit link between Gaussian fields and Gaussian Markov random fields: the stochastic partial differential equation approach , 2011 .

[30]  Aasa Feragen,et al.  Wrapped Gaussian Process Regression on Riemannian Manifolds , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[31]  Doug M. Boyer,et al.  Gaussian Process Landmarking on Manifolds , 2018, SIAM J. Math. Data Sci..

[32]  H. Rue,et al.  Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations , 2009 .

[33]  Marc Peter Deisenroth,et al.  Efficiently sampling functions from Gaussian process posteriors , 2020, ICML.

[34]  Haavard Rue,et al.  Think continuous: Markovian Gaussian models in spatial statistics , 2011, 1110.6796.

[35]  Alexander J. Smola,et al.  Learning with kernels , 1998 .

[36]  Carl E. Rasmussen,et al.  PILCO: A Model-Based and Data-Efficient Approach to Policy Search , 2011, ICML.

[37]  Jasper Snoek,et al.  Practical Bayesian Optimization of Machine Learning Algorithms , 2012, NIPS.

[38]  David Bolin,et al.  The Rational SPDE Approach for Gaussian Random Fields With General Smoothness , 2017, Journal of Computational and Graphical Statistics.

[39]  Michel Verleysen,et al.  Nonlinear Dimensionality Reduction , 2021, Computer Vision.

[40]  W. D. Evans,et al.  PARTIAL DIFFERENTIAL EQUATIONS , 1941 .

[41]  J. Remacle,et al.  Gmsh: A 3‐D finite element mesh generator with built‐in pre‐ and post‐processing facilities , 2009 .

[42]  Danna Zhou,et al.  d. , 1840, Microbial pathogenesis.

[43]  Joseph Lipka,et al.  A Table of Integrals , 2010 .

[44]  Sylvain Calinon,et al.  Bayesian Optimization Meets Riemannian Manifolds in Robot Learning , 2019, CoRL.

[45]  Arno Solin,et al.  Spatiotemporal Learning via Infinite-Dimensional Bayesian Filtering and Smoothing: A Look at Gaussian Process Regression Through Kalman Filtering , 2013, IEEE Signal Processing Magazine.

[46]  I. Chavel Eigenvalues in Riemannian geometry , 1984 .