A Multi-parent Memetic Algorithm for the Linear Ordering Problem

In this paper, we present a multi-parent memetic algorithm (denoted by MPM) for solving the classic Linear Ordering Problem (LOP). The MPM algorithm integrates in particular a multi-parent recombination operator for generating offspring solutions and a distance-and-quality based criterion for pool updating. Our MPM algorithm is assessed on 8 sets of 484 widely used LOP instances and compared with several state-of-the-art algorithms in the literature, showing the efficacy of the MPM algorithm. Specifically, for the 255 instances whose optimal solutions are unknown, the MPM is able to detect better solutions than the previous best-known ones for 66 instances, while matching the previous best-known results for 163 instances. Furthermore, some additional experiments are carried out to analyze the key elements and important parameters of MPM.

[1]  M. Laguna,et al.  Scatter search for the linear ordering problem , 1999 .

[2]  S.,et al.  An Efficient Heuristic Procedure for Partitioning Graphs , 2022 .

[3]  R. Kaas,et al.  A branch and bound algorithm for the acyclic subgraph problem , 1981 .

[4]  Lawrence. Davis,et al.  Handbook Of Genetic Algorithms , 1990 .

[5]  Wassily Leontief Input-Output Economics , 1966 .

[6]  T. Klastorin,et al.  Optimal Weighted Ancestry Relationships , 1974 .

[7]  Richard K. Congram Polynomially searchable exponential neighbourhoods for sequencing problems in combinatorial optimisation , 2000 .

[8]  Stefan Chanas,et al.  A new heuristic algorithm solving the linear ordering problem , 1996, Comput. Optim. Appl..

[9]  Fred W. Glover,et al.  An Experimental Evaluation of a Scatter Search for the Linear Ordering Problem , 2001, J. Glob. Optim..

[10]  Jin-Kao Hao,et al.  A memetic algorithm for graph coloring , 2010, Eur. J. Oper. Res..

[11]  G. Syswerda,et al.  Schedule Optimization Using Genetic Algorithms , 1991 .

[12]  Jin-Kao Hao,et al.  An evolutionary approach with diversity guarantee and well-informed grouping recombination for graph coloring , 2010, Comput. Oper. Res..

[13]  Michael Jünger,et al.  Journal of Graph Algorithms and Applications 2-layer Straightline Crossing Minimization: Performance of Exact and Heuristic Algorithms , 2022 .

[14]  Andrew Lim,et al.  Designing A Hybrid Genetic Algorithm for the Linear Ordering Problem , 2003, GECCO.

[15]  Gerhard Reinelt,et al.  The Linear Ordering Problem: Exact and Heuristic Methods in Combinatorial Optimization , 2011 .

[16]  J. Mitchell,et al.  Solving Linear Ordering Problems with a Combined Interior Pointtsimplex Cutting Plane Algorithm * , 1999 .

[17]  K. Sörensen,et al.  Memetic algorithms with population management , 2006 .

[18]  Michel X. Goemans,et al.  The Strongest Facets of the Acyclic Subgraph Polytope Are Unknown , 1996, IPCO.

[19]  Pablo Moscato,et al.  A Gentle Introduction to Memetic Algorithms , 2003, Handbook of Metaheuristics.

[20]  T. Stützle,et al.  The Linear Ordering Problem: Instances, Search Space Analysis and Algorithms , 2004 .

[21]  G. Reinelt,et al.  Combinatorial optimization and small polytopes , 1996 .

[22]  Jin-Kao Hao,et al.  Memetic Algorithms in Discrete Optimization , 2012, Handbook of Memetic Algorithms.

[23]  R. K. Shyamasundar,et al.  Introduction to algorithms , 1996 .

[24]  Gerhard Reinelt,et al.  A Cutting Plane Algorithm for the Linear Ordering Problem , 1984, Oper. Res..

[25]  Pablo Moscato,et al.  Handbook of Memetic Algorithms , 2011, Studies in Computational Intelligence.

[26]  Donald E. Knuth,et al.  The Stanford GraphBase - a platform for combinatorial computing , 1993 .

[27]  Abraham Duarte,et al.  Tabu search for the linear ordering problem with cumulative costs , 2011, Comput. Optim. Appl..

[28]  Rafael Martí,et al.  Variable neighborhood search for the linear ordering problem , 2006, Comput. Oper. Res..