Assigning stereochemistry to single diastereoisomers by GIAO NMR calculation: the DP4 probability.

GIAO NMR shift calculation has been applied to the challenging task of reliably assigning stereochemistry with quantifiable confidence when only one set of experimental data are available. We have compared several approaches for assigning a probability to each candidate structure and have tested the ability of these methods to distinguish up to 64 possible diastereoisomers of 117 different molecules, using NMR shifts obtained in rapid and computationally inexpensive single-point calculations on molecular mechanics geometries without time-consuming ab initio geometry optimization. We show that a probability analysis based on the errors in each (13)C or (1)H shift is significantly more successful at making correct assignments with high confidence than are probabilities based on the correlation coefficient and mean absolute error parameters. Our new probability measure, which we have termed DP4, complements the probabilities obtained from our previously developed CP3 parameter, which applies to the case of assigning a pair of diastereoisomers when one has both experimental data sets. We illustrate the application of DP4 to assigning the stereochemistry or structure of 21 natural products that were originally misassigned in the literature or that required extensive synthesis of diastereoisomers to establish their stereochemistry.

[1]  Giuseppe Bifulco,et al.  Comparison of different theory models and basis sets in the calculation of 13C NMR chemical shifts of natural products , 2004, Magnetic resonance in chemistry : MRC.

[2]  M. Figueredo,et al.  Total synthesis of the putative structure of stemonidine: the definitive proof of misassignment. , 2007, Organic letters.

[3]  M. Lipton,et al.  Asymmetric synthesis of four diastereomers of 3-hydroxy-2,4,6-trimethylheptanoic acid: proof of configurational assignment. , 2003, The Journal of organic chemistry.

[4]  T. Halgren MMFF VII. Characterization of MMFF94, MMFF94s, and other widely available force fields for conformational energies and for intermolecular‐interaction energies and geometries , 1999, Journal of computational chemistry.

[5]  W. Clark Still,et al.  An unbounded systematic search of conformational space , 1991 .

[6]  T. Keith,et al.  A comparison of models for calculating nuclear magnetic resonance shielding tensors , 1996 .

[7]  A. Becke Density-functional thermochemistry. III. The role of exact exchange , 1993 .

[8]  M. Frisch,et al.  Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields , 1994 .

[9]  Jeremy MG Taylor,et al.  Robust Statistical Modeling Using the t Distribution , 1989 .

[10]  F. A. Neugebauer,et al.  Electrochemical oxidation and structural changes of 5,6-dihydrobenzo[c]cinnolines , 1996 .

[11]  Lijun Han,et al.  Sesquiterpenes from the red alga Laurencia tristicha. , 2005, Journal of natural products.

[12]  A. T. Dossey,et al.  Relative configuration of natural products using NMR chemical shifts. , 2009, Journal of natural products.

[13]  P. Joseph-Nathan,et al.  DFT‐GIAO 1H and 13C NMR prediction of chemical shifts for the configurational assignment of 6β‐hydroxyhyoscyamine diastereoisomers , 2009, Magnetic resonance in chemistry : MRC.

[14]  T. Halgren Merck molecular force field. I. Basis, form, scope, parameterization, and performance of MMFF94 , 1996, J. Comput. Chem..

[15]  E. Brenna,et al.  Chirality and fragrance chemistry: stereoisomers of the commercial chiral odorants Muguesia and Pamplefleur. , 2005, The Journal of organic chemistry.

[16]  A. Oliver,et al.  Structure revision of spiroleucettadine, a sponge alkaloid with a bicyclic core meager in H-atoms. , 2008, The Journal of organic chemistry.

[17]  Giuseppe Bifulco,et al.  Structure validation of natural products by quantum-mechanical GIAO calculations of 13C NMR chemical shifts. , 2002, Chemistry.

[18]  R. Hsung,et al.  Gassman's intramolecular [2 + 2] cationic cycloaddition. formal total syntheses of raikovenal and epi-raikovenal. , 2008, Organic letters.

[19]  H. Morita,et al.  Nankakurine A, a novel C16N2-type alkaloid from Lycopodium hamiltonii. , 2004, Organic letters.

[20]  W. Robien,et al.  13C‐NMR spectra of santalol derivatives: a comparison of DFT‐based calculations and database‐oriented prediction techniques , 2009, Magnetic resonance in chemistry : MRC.

[21]  K C Nicolaou,et al.  Chasing molecules that were never there: misassigned natural products and the role of chemical synthesis in modern structure elucidation. , 2005, Angewandte Chemie.

[22]  J. Mowat,et al.  Development of a concise and general enantioselective approach to 2,5-disubstituted-3-hydroxytetrahydrofurans. , 2009, Organic letters.

[23]  L. Williams,et al.  The Brosimum allene: a structural revision. , 2008, Organic letters.

[24]  Thomas A. Halgren,et al.  Merck molecular force field. III. Molecular geometries and vibrational frequencies for MMFF94 , 1996, J. Comput. Chem..

[25]  István Kolossváry,et al.  Low‐mode conformational search elucidated: Application to C39H80 and flexible docking of 9‐deazaguanine inhibitors into PNP , 1999 .

[26]  Gil Valdo José da Silva,et al.  Chemical shifts calculations on aromatic systems: a comparison of models and basis sets , 2004 .

[27]  M. Kaupp,et al.  Interpretation of 13C NMR chemical shifts in halomethyl cations. On the importance of spin-orbit coupling and electron correlation , 1997 .

[28]  A. Becke,et al.  Density-functional exchange-energy approximation with correct asymptotic behavior. , 1988, Physical review. A, General physics.

[29]  T. Halgren,et al.  Merck molecular force field. V. Extension of MMFF94 using experimental data, additional computational data, and empirical rules , 1996 .

[30]  K. Nicolaou,et al.  Total synthesis and revised structure of biyouyanagin A. , 2007, Angewandte Chemie.

[31]  J. Bergman,et al.  Synthetic studies of cephalandole alkaloids and the revised structure of cephalandole A. , 2008, Journal of natural products.

[32]  P. Jervis,et al.  Tether-directed synthesis of highly substituted oxasilacycles via an intramolecular allylation employing allylsilanes , 2007, Beilstein journal of organic chemistry.

[33]  Giuseppe Bifulco,et al.  Determination of the relative stereochemistry of flexible organic compounds by Ab initio methods: conformational analysis and Boltzmann-averaged GIAO 13C NMR chemical shifts. , 2002, Chemistry.

[34]  Somsak Ruchirawat,et al.  Constituents of the leaves of Macaranga tanarius. , 2005, Journal of natural products.

[35]  G. Appendino,et al.  Sesquiterpene coumarin ethers from asafetida , 1993 .

[36]  G. Chang,et al.  An internal-coordinate Monte Carlo method for searching conformational space , 1989 .

[37]  Jun Zhou,et al.  Swerilactones A and B, anti-HBV new lactones from a tradtional Chinese herb: Swertia mileensis as a treatment for viral hepatitis. , 2009, Organic letters.

[38]  J. Goodman,et al.  The stereochemical assignment of acyclic polyols: a computational study of the NMR data of a library of stereopentad sequences from polyketide natural products , 2010 .

[39]  E. Dellacassa,et al.  (−)-epi-Presilphiperfolan-1-ol, a new triquinane sesquiterpene from the essential oil of Anemia tomentosa var. anthriscifolia (Pteridophyta) , 2009 .

[40]  Y. Obara,et al.  Nankakurine B, A new alkaloid from Lycopodium hamiltonii and revised stereostructure of nankakurine A , 2006 .

[41]  M. Namikoshi,et al.  New cytotoxic 14-membered macrolides from marine-derived fungus Aspergillus ostianus. , 2008, Organic letters.

[42]  Henry S Rzepa,et al.  Structural reassignment of obtusallenes V, VI, and VII by GIAO-based density functional prediction. , 2008, Journal of natural products.

[43]  A. F. Barrero,et al.  Achilleol B: a new tricyclic triterpene skeleton from Achillea odorata L , 1989 .

[44]  Thomas A. Halgren,et al.  Merck molecular force field. IV. conformational energies and geometries for MMFF94 , 1996 .

[45]  J. Goodman,et al.  Assigning the stereochemistry of pairs of diastereoisomers using GIAO NMR shift calculation. , 2009, The Journal of organic chemistry.

[46]  Chen-Wei Jao,et al.  Indole alkaloids from Cephalanceropsis gracilis. , 2006, Journal of natural products.

[47]  W. Watson,et al.  Isolation and structure of two diterpene quinones from Salvia Ballotaeflora Benth (Labiatae) , 1976 .

[48]  F. London,et al.  Théorie quantique des courants interatomiques dans les combinaisons aromatiques , 1937 .

[49]  G. Bifulco,et al.  Gloriosaols A and B, two novel phenolics from Yucca gloriosa: structural characterization and configurational assignment by a combined NMR-quantum mechanical strategy , 2007 .

[50]  Peter J McCarthy,et al.  Neopeltolide, a macrolide from a lithistid sponge of the family Neopeltidae. , 2007, Journal of natural products.

[51]  K. Nicolaou,et al.  On the structure of maitotoxin. , 2007, Angewandte Chemie.

[52]  Paul S. Ralifo,et al.  Total synthesis and stereochemical reassignment of (+)-neopeltolide. , 2007, Angewandte Chemie.

[53]  Y. Obara,et al.  Tricholomalides A-C, new neurotrophic diterpenes from the mushroom Tricholoma sp. , 2003, Journal of natural products.

[54]  B. Kunze,et al.  Total synthesis and biological activity of neopeltolide and analogues. , 2008, Chemistry.

[55]  R. Capon,et al.  Discorhabdins revisited: cytotoxic alkaloids from southern australian marine sponges of the genera Higginsia and Spongosorites. , 2009, Journal of natural products.

[56]  J. Blunt,et al.  Concise, stereoselective route to the four diastereoisomers of 4-methylproline. , 2008, Journal of Natural Products.

[57]  A. Zampella,et al.  Callipeltin A, an Anti-HIV Cyclic Depsipeptide from the New Caledonian Lithistida Sponge Callipelta sp. , 1996 .

[58]  Hisashi Yamamoto,et al.  Super silyl stereo-directing groups for complete 1,5-syn and -anti stereoselectivities in the aldol reactions of beta-siloxy methyl ketones with aldehydes. , 2010, Journal of the American Chemical Society.

[59]  Pinhong Chen,et al.  Synthesis and structural revision of (+/-)-laurentristich-4-ol. , 2008, The Journal of organic chemistry.

[60]  Alessandro Bagno,et al.  Toward the complete prediction of the 1H and 13C NMR spectra of complex organic molecules by DFT methods: application to natural substances. , 2006, Chemistry.

[61]  D. Truhlar,et al.  Improved description of nuclear magnetic resonance chemical shielding constants using the M06-L meta-generalized-gradient-approximation density functional. , 2008, The journal of physical chemistry. A.

[62]  Sudhir M. Hande,et al.  Total synthesis of aspergillide B and structural discrepancy of aspergillide A , 2009 .

[63]  Peter Pulay,et al.  Efficient implementation of the gauge-independent atomic orbital method for NMR chemical shift calculations , 1990 .

[64]  Fabian López-Vallejo,et al.  Structural reassignment, absolute configuration, and conformation of hypurticin, a highly flexible polyacyloxy-6-heptenyl-5,6-dihydro-2H-pyran-2-one. , 2009, Journal of natural products.

[65]  R. Ditchfield,et al.  Molecular Orbital Theory of Magnetic Shielding and Magnetic Susceptibility , 1972 .

[66]  David Forsyth,et al.  Computed 13C NMR Chemical Shifts via Empirically Scaled GIAO Shieldings and Molecular Mechanics Geometries. Conformation and Configuration from 13C Shifts , 1997 .

[67]  K. Nakanishi,et al.  Studies on some new Stemona alkaloids : A diagnostically useful 1H NMR line-broadening effect , 1982 .

[68]  Kazuaki Tanaka,et al.  Novel neofusapyrones isolated from Verticillium dahliae as potent antifungal substances. , 2010, Bioorganic & medicinal chemistry letters.

[69]  Ariel M. Sarotti,et al.  A multi-standard approach for GIAO (13)C NMR calculations. , 2009, The Journal of organic chemistry.

[70]  G. Chang,et al.  Macromodel—an integrated software system for modeling organic and bioorganic molecules using molecular mechanics , 1990 .

[71]  T. Halgren MMFF VI. MMFF94s option for energy minimization studies , 1999, J. Comput. Chem..

[72]  A. Singh,et al.  A chemo-enzymatic route to diastereoisomers of 2-methyl-1-phenyl-1,3-butanediol: the dual role of microorganisms , 2007 .

[73]  N. Lajis,et al.  Terpenoids and a diarylheptanoid from Zingiber ottensii. , 2006, Journal of natural products.

[74]  T. Halgren Merck molecular force field. II. MMFF94 van der Waals and electrostatic parameters for intermolecular interactions , 1996 .

[75]  Tamer T. El-Idreesy,et al.  Bicyclic peroxides and perorthoesters with 1,2,4-trioxane structures. , 2007, Angewandte Chemie.

[76]  A. Neto,et al.  Calculated NMR as a tool for structural elucidation of jungianol and mutisianthol , 2005 .

[77]  Christopher J Cramer,et al.  Hybrid Density Functional Methods Empirically Optimized for the Computation of (13)C and (1)H Chemical Shifts in Chloroform Solution. , 2006, Journal of chemical theory and computation.

[78]  New natural products in the discorhabdin A- and B-series from New Zealand-sourced Latrunculia spp. sponges , 2009 .

[79]  Alessandro Bagno,et al.  Can two molecules have the same NMR spectrum? Hexacyclinol revisited. , 2009, Organic letters.

[80]  Giuseppe Bifulco,et al.  Determination of relative configuration in organic compounds by NMR spectroscopy and computational methods. , 2007, Chemical reviews.

[81]  M. Maier,et al.  Structural revisions of natural products by total synthesis. , 2009, Natural product reports.

[82]  H. Hsieh,et al.  First total syntheses of (+/-)-annuionone B and (+/-)-tanarifuranonol. , 2008, Organic Letters.

[83]  M. Perkins,et al.  Total synthesis and structural elucidation of (-)-maurenone. , 2006, The Journal of organic chemistry.

[84]  Jing Yang,et al.  Structure revision of hassananes with use of quantum mechanical 13C NMR chemical shifts and UV-vis absorption spectra. , 2008, The journal of physical chemistry. A.

[85]  J. Goodman,et al.  Stereochemical elucidation of the 1,4 polyketide amphidinoketide I. , 2003, Chemical communications.

[86]  Davidr . Evans,et al.  Synthesis of the antifungal macrolide antibiotic (+)-roxaticin. , 2003, Journal of the American Chemical Society.

[87]  Peter Wipf,et al.  Density functional theory calculation of 13C NMR shifts of diazaphenanthrene alkaloids: reinvestigation of the structure of samoquasine A. , 2008, The Journal of organic chemistry.

[88]  F. Sautel,et al.  Relative stereochemical determination and synthesis of the C1-C17 fragment of a new natural polyketide. , 2009, The Journal of organic chemistry.

[89]  E. Fattorusso,et al.  Isolation and Structure Determination of Aplidinones A‐C from the Mediterranean Ascidian Aplidium conicum: A Successful Regiochemistry Assignment by Quantum Mechanical 13C NMR Chemical Shift Calculations. , 2005 .

[90]  H. Morita,et al.  Cephalezomines G, H, J, K, L, and M, new alkaloids from Cephalotaxus harringtonia var. nana , 2002 .

[91]  E. Roulland Total synthesis of (+)-oocydin A: application of the Suzuki-Miyaura cross-coupling of 1,1-dichloro-1-alkenes with 9-alkyl 9-BBN. , 2008, Angewandte Chemie.

[92]  Ying Zhang,et al.  Systematic studies on the computation of nuclear magnetic resonance shielding constants and chemical shifts: The density functional models , 2007, J. Comput. Chem..

[93]  Parr,et al.  Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. , 1988, Physical review. B, Condensed matter.

[94]  S. Rychnovsky Predicting NMR spectra by computational methods: structure revision of hexacyclinol. , 2006, Organic letters.

[95]  S. Danishefsky,et al.  Total synthesis and structural revision of (+/-)-tricholomalides A and B. , 2009, Journal of the American Chemical Society.

[96]  T. Taniguchi,et al.  Asymmetric total synthesis and revised structure of cephalezomine H. , 2009, The Journal of organic chemistry.

[97]  K. Lee,et al.  Biyouyanagin A, an anti-HIV agent from Hypericum chinense L. var. salicifolium. , 2005, Organic letters.

[98]  Jonathan M Goodman,et al.  Stereostructure assignment of flexible five-membered rings by GIAO 13C NMR calculations: prediction of the stereochemistry of elatenyne. , 2008, The Journal of organic chemistry.

[99]  L. Toll,et al.  Synthesis of isohasubanan alkaloids via enantioselective ketone allylation and discovery of an unexpected rearrangement. , 2009, The Journal of organic chemistry.

[100]  D. Giesen,et al.  A hybrid quantum mechanical and empirical model for the prediction of isotropic 13C shielding constants of organic molecules , 2002 .

[101]  L. Overman,et al.  Enantioselective total syntheses of nankakurines A and B: confirmation of structure and establishment of absolute configuration. , 2008, Journal of the American Chemical Society.

[102]  I. Peterson,et al.  Studies in polypropionate synthesis : a general approach to the synthesis of stereopentads , 1992 .

[103]  G. Majetich,et al.  Total synthesis of (+)-19-deoxyicetexone, (-)-icetexone, and (+)-5-epi-icetexone. , 2009, Organic letters.