Rigidity of flag manifolds

Let N ⊂ GL(n,R) be the group of upper triangular matrices with 1s on the diagonal, equipped with the standard Carnot group structure. We show that quasiconformal homeomorphisms, and more generally Sobolev mappings with nondegenerate Pansu differential, are rigid when n ≥ 4; this settles the Regularity Conjecture for such groups. This result is deduced from a rigidity theorem for the manifold of complete flags in R. Similar results also hold in the complex and quaternion cases.

[1]  J. Dieudonne,et al.  On the automorphisms of the classical groups. With a supplement by Loo-Keng Hua , 1951 .

[2]  R. Montgomery A Tour of Subriemannian Geometries, Their Geodesics and Applications , 2006 .

[3]  Camillo De Lellis,et al.  The Euler equations as a differential inclusion , 2007 .

[4]  G. A. Soifer,et al.  Free Subgroups of Linear Groups , 2007 .

[5]  I. M. Singer,et al.  The infinite groups of Lie and Cartan Part I, (The transitive groups) , 1965 .

[6]  A. Ottazzi,et al.  Algebraic prolongation and rigidity of Carnot groups , 2011 .

[7]  M. Gromov Carnot-Carathéodory spaces seen from within , 1996 .

[8]  Camillo De Lellis,et al.  High dimensionality and h-principle in PDE , 2016, 1609.03180.

[9]  S. Vodopyanov Differentiability of mappings in the geometry of Carnot manifolds , 2007 .

[10]  S. Müller Variational models for microstructure and phase transitions , 1999 .

[11]  J. Heinonen,et al.  Quasiconformal maps in metric spaces with controlled geometry , 1998 .

[12]  B. Kleiner,et al.  Pansu pullback and exterior differentiation for Sobolev maps on Carnot groups , 2020, 2007.06694.

[13]  Yu. G. Reshetnyak Space mappings with bounded distortion , 1967 .

[14]  M. Cowling,et al.  Conformality and $Q$-harmonicity in Carnot groups , 2006 .

[15]  Tadeusz Iwaniec,et al.  Quasiregular mappings in even dimensions , 1993 .

[16]  E. Cartan,et al.  Sur la structure des groupes infinis de transformation , 1904 .

[17]  B. Dacorogna,et al.  Implicit partial differential equations , 1999 .

[18]  Luc Tartar,et al.  Compensated compactness and applications to partial differential equations , 1979 .

[19]  Jeff Cheeger,et al.  Differentiability of Lipschitz Functions on Metric Measure Spaces , 1999 .

[20]  P. Pansu,et al.  Métriques de Carnot-Carthéodory et quasiisométries des espaces symétriques de rang un , 1989 .

[21]  V. Vicol,et al.  Nonuniqueness of weak solutions to the Navier-Stokes equation , 2017, Annals of Mathematics.

[22]  R. Palais A Global Formulation of the Lie Theory of Transformation Groups , 1957 .

[23]  Philip Isett,et al.  A Proof of Onsager's Conjecture , 2016, 1608.08301.

[24]  G. Mostow Strong Rigidity of Locally Symmetric Spaces. , 1973 .

[25]  A. Korányi,et al.  Contact and Conformal Maps in , 2005 .

[26]  S. Donaldson PARTIAL DIFFERENTIAL RELATIONS (Ergebnisse der Mathematik und ihrer Grenzgebiete (3) 9) , 1988 .

[27]  B. Kleiner,et al.  Pansu pullback and rigidity of mappings between Carnot groups , 2020, 2004.09271.

[28]  L. Capogna Regularity for quasilinear equations and $1-$quasiconformal maps in Carnot groups , 1999 .

[29]  S. Muller,et al.  Convex integration for Lipschitz mappings and counterexamples to regularity , 2003 .

[30]  Vladimir Scheffer,et al.  An inviscid flow with compact support in space-time , 1993 .

[31]  N. Tanaka On differential systems, graded Lie algebras and pseudo-groups , 1970 .

[32]  A. Ottazzi,et al.  Contact and 1-quasiconformal maps on Carnot groups , 2010, 1001.3817.

[33]  François Murat Compacité par compensation : condition nécessaire et suffisante de continuité faible sous une hypothèse de rang constant , 1981 .

[34]  S. Vodop’yanov Foundations of the Theory of Mappings with Bounded Distortion on Carnot Groups , 2005 .