Analysis of finite element methods for second order boundary value problems using mesh dependent norms
暂无分享,去创建一个
[1] J. Bramble,et al. Estimation of Linear Functionals on Sobolev Spaces with Application to Fourier Transforms and Spline Interpolation , 1970 .
[2] J. Douglas,et al. Optimal _{∞} error estimates for Galerkin approximations to solutions of two-point boundary value problems , 1975 .
[3] Uniform convergence of Galerkin’s method for splines on highly nonuniform meshes , 1977 .
[4] I. Babuska. Error-bounds for finite element method , 1971 .
[5] A. H. Schatz,et al. Interior estimates for Ritz-Galerkin methods , 1974 .
[6] A. Aziz. The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations , 1972 .
[7] J. Nitsche,et al. L∞-convergence of finite element approximations , 1977 .
[8] M. Wheeler. An Optimal $L_\infty $ Error Estimate for Galerkin Approximations to Solutions of Two-Point Boundary Value Problems , 1973 .
[9] J. Osborn. Approximation of the Eigenvalues of a Nonselfadjoint Operator Arising in the Study of the Stability of Stationary Solutions of the Navier–Stokes Equations , 1976 .
[10] J. Nitsche,et al. Ein Kriterium für die Quasi-Optimalität des Ritzschen Verfahrens , 1968 .
[11] A. H. Schatz,et al. A weak discrete maximum principle and stability of the finite element method in _{∞} on plane polygonal domains. I , 1980 .