Efficient storage and retrieval of detailed building models: multi-disciplinary and long-term use of geometric and semantic construction information

From: Krijnen & Beetz n.d. The Industry Foundation Classes (IFC) are a prevalent data model in which Building Information Models can be exchanged, typically with a file-based nature. Processing the full extent of these models can be time-consuming. Considering the multi-disciplinary nature of the construction industry, stakeholders will typically only be interested in a small subset, depending on the purpose of the exchange. Therefore, the retrieval of relevant subsets, whether spatially, based on discipline, or others, is necessary to effectively consume such datasets in downstream applications. Prevalent encoding forms of IFC models are text-based and do not facilitate random-access seeking within the file and do not impose an ordering on the definition of elements within the file. Therefore, typically, the entire file needs to be read in order to find the data of interest. Furthermore, text-based data is slower to parse in comparison to binary data. This chapter assesses a binary serialization format originating from the family of EXPRESS standards. It is based on an existing open, binary, hierarchical data format called HDF5 that allows random access to specific instances and therefore efficient retrieval of relevant subsets. The block-level, transparent compression yields a reduction of file sizes as compared to traditional serializations. Fully specified datatypes guarantee interoperable use. Several serialization profiles are introduced that cater to specific use cases by governing storage settings. Advanced functionality from the HDF5 library is applied to offer novel paradigms for fine-grained access rights, varying level of detail, revision management and aggregation of aspect models. Krijnen & Beetz n.d. T. Krijnen and J. Beetz (n.d.). “An Efficient Binary Storage Format for IFC Building Models Using HDF5”. In: Journal of Information Technology in Construction tbd (). To be submitted 12 Chapter 1. Binary serialization of IFC building models From: Krijnen & Beetz n.d.

[1]  Seppo Törmä,et al.  Semantic Linking of Building Information Models , 2013, 2013 IEEE Seventh International Conference on Semantic Computing.

[2]  Yi Li,et al.  RiMOM: A Dynamic Multistrategy Ontology Alignment Framework , 2009, IEEE Transactions on Knowledge and Data Engineering.

[3]  Antonio Galgaro,et al.  Contactless recognition of concrete surface damage from laser scanning and curvature computation , 2009 .

[4]  David J. DeWitt,et al.  Scientific data management in the coming decade , 2005, SGMD.

[5]  Tf Thomas Krijnen,et al.  An efficient binary storage format for IFC building models using HDF5 hierarchical data format , 2020 .

[6]  Anthony G. Cohn,et al.  A Spatial Logic based on Regions and Connection , 1992, KR.

[7]  Vladimir Bazjanac,et al.  Bim – Geometry Modeling Guidelines For Building Energy Performance Simulation , 2013, Building Simulation Conference Proceedings.

[8]  Ana Roxin,et al.  SimpleBIM: From full ifcOWL graphs to simplified building graphs , 2016 .

[9]  Abraham Bernstein,et al.  OptARQ: A SPARQL Optimization Approach based on Triple Pattern Selectivity Estimation , 2007 .

[10]  Christian Strobl Dimensionally Extended Nine-Intersection Model (DE-9IM) , 2008, Encyclopedia of GIS.

[11]  Gerhard Weikum,et al.  RDF-3X: a RISC-style engine for RDF , 2008, Proc. VLDB Endow..

[12]  Tf Thomas Krijnen,et al.  openPSTD : the open source implementation of the Pseudo Spectral Time-Domain method , 2014 .

[13]  Nigel Shadbolt,et al.  SPARQL Query Processing with Conventional Relational Database Systems , 2005, WISE Workshops.

[14]  Jakob Beetz,et al.  BIMSERVER.Org – An Open Source IFC Model Server , 2010 .

[15]  Tf Thomas Krijnen,et al.  Efficient binary serialization of IFC models using HDF5 , 2016 .

[16]  Robert C. Bolles,et al.  Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography , 1981, CACM.

[17]  Sander Oude Elberink,et al.  Accuracy and Resolution of Kinect Depth Data for Indoor Mapping Applications , 2012, Sensors.

[18]  Charles M. Eastman,et al.  Benchmark tests for BIM data exchanges of precast concrete , 2009 .

[19]  D. Wells,et al.  Fits: a flexible image transport system , 1981 .

[20]  Moshe Y. Vardi The complexity of relational query languages (Extended Abstract) , 1982, STOC '82.

[21]  Christopher Schwartz,et al.  Towards Efficient Online Compression of Incrementally Acquired Point Clouds , 2014, VMV.

[22]  Sisi Zlatanova,et al.  Interoperable data models for infrastructural artefacts : a novel IFC extension method using RDF vocabularies exemplified with quay wall structures for harbors , 2014 .

[23]  Pieter Pauwels,et al.  Coping with lists in the ifcOWL ontology , 2015 .

[24]  Manolis I. A. Lourakis,et al.  Toward automated generation of parametric BIMs based on hybrid video and laser scanning data , 2010, Adv. Eng. Informatics.

[25]  Raja R. A. Issa,et al.  Building Information Modeling in Support of Sustainable Design and Construction , 2013 .

[26]  Diego Calvanese,et al.  Ontop: Answering SPARQL queries over relational databases , 2016, Semantic Web.

[27]  Yahya Alshawabkeh,et al.  Integration of Digital Photogrammetry and Laser Scanning for Heritage Documentation , 2004 .

[28]  Dave Reynolds,et al.  SPARQL basic graph pattern optimization using selectivity estimation , 2008, WWW.

[29]  Wei Yan,et al.  BPOpt: A framework for BIM-based performance optimization , 2015 .

[30]  Chih-Chen Chang,et al.  A framework for dimensional and surface quality assessment of precast concrete elements using BIM and 3D laser scanning , 2015 .

[31]  Sisi Zlatanova On 3D topological relationships , 2000, Proceedings 11th International Workshop on Database and Expert Systems Applications.

[32]  Diego González-Aguilera,et al.  A New Approach for Structural Monitoring of Large Dams with a Three-Dimensional Laser Scanner , 2008, Sensors.

[33]  M. Egenhofer,et al.  Point-Set Topological Spatial Relations , 2001 .

[34]  Patricio A. Vela,et al.  Construction performance monitoring via still images, time-lapse photos, and video streams: Now, tomorrow, and the future , 2015, Adv. Eng. Informatics.

[35]  Konstantina Bereta,et al.  Ontop of Geospatial Databases , 2016, SEMWEB.

[36]  Robert Stevens,et al.  Putting OWL in Order: Patterns for Sequences in OWL , 2006, OWLED.

[37]  Ana Roxin,et al.  FOWLA, A Federated Architecture for Ontologies , 2015, RuleML.

[38]  Reinhard Klein,et al.  Fast vector quantization for efficient rendering of compressed point-clouds , 2008, Comput. Graph..

[39]  Tf Thomas Krijnen,et al.  Building information deduced : state and potentials for Information query in building information modelling , 2014 .

[40]  Pieter Pauwels,et al.  Enhancing the ifcOWL ontology with an alternative representation for geometric data , 2017 .

[41]  Jakob Beetz,et al.  BIMQL - An open query language for building information models , 2013, Adv. Eng. Informatics.

[42]  Burcu Akinci,et al.  Combining Reality Capture Technologies for Construction Defect Detection: A Case Study , 2003 .

[43]  Hakan Yaman,et al.  Green building assessment tool (GBAT) for integrated BIM-based design decisions , 2016 .

[44]  Raoul Wessel,et al.  Towards Preservation of Semantically Enriched Architectural Knowledge , 2013, SDA.

[45]  Thomas Krijnen,et al.  Green2.0: Enabling Complex Interactions Between Buildings and People , 2016, CSCW '16 Companion.

[46]  Burcin Becerik-Gerber,et al.  The perceived value of building information modeling in the U.S. building industry , 2010, J. Inf. Technol. Constr..

[47]  Burcu Akinci,et al.  Requirements and Evaluation of Standards for Integration of Sensor Data with Building Information Models , 2009 .

[48]  Ana Roxin,et al.  IfcWoD, Semantically Adapting IFC Model Relations into OWL Properties , 2015, ArXiv.

[49]  Thomas Krijnen,et al.  An IFC schema extension and binary serialization format to efficiently integrate point cloud data into building models , 2017, Adv. Eng. Informatics.

[50]  Azarakhsh Rafiee,et al.  From BIM to Geo-analysis: View Coverage and Shadow Analysis by BIM/GIS Integration☆ , 2014 .

[51]  Charles M. Eastman,et al.  Validations for ensuring the interoperability of data exchange of a building information model , 2015 .

[52]  E W East,et al.  Construction Operations Building Information Exchange (COBIE) , 2007 .

[53]  Abraham Bernstein,et al.  Hexastore: sextuple indexing for semantic web data management , 2008, Proc. VLDB Endow..

[54]  Heeseok Lee,et al.  Justifying Database Normalization: A Cost/Benefit Model , 1995, Inf. Process. Manag..

[55]  Daniel J. Abadi,et al.  Scalable Semantic Web Data Management Using Vertical Partitioning , 2007, VLDB.

[56]  Michela Bertolotto,et al.  A spatio-temporal index for aerial full waveform laser scanning data , 2018 .

[57]  Wojciech Rytter,et al.  Text Algorithms , 1994 .

[58]  Goetz Graefe,et al.  Data compression and database performance , 1991, [Proceedings] 1991 Symposium on Applied Computing.

[59]  Jon Louis Bentley,et al.  Multidimensional binary search trees used for associative searching , 1975, CACM.

[60]  Vailin Choi Investigations into using HDF5 as An Alternative to STEP for Finite Element Modeling Data , 2007 .

[61]  Tf Thomas Krijnen,et al.  Using the BIM collaboration format in a server based workflow , 2014 .

[62]  Renato Pajarola,et al.  An efficient multi-resolution framework for high quality interactive rendering of massive point clouds using multi-way kd-trees , 2012, The Visual Computer.

[63]  David A. Huffman,et al.  A method for the construction of minimum-redundancy codes , 1952, Proceedings of the IRE.

[64]  S. Donkers,et al.  Automatic generation of CityGML LoD3 building models from IFC models , 2013 .

[65]  Radu Bogdan Rusu,et al.  3D is here: Point Cloud Library (PCL) , 2011, 2011 IEEE International Conference on Robotics and Automation.

[66]  Pieter Pauwels,et al.  Semantic web technologies in AEC industry: A literature overview , 2017 .

[67]  Jantien E. Stoter,et al.  Processing BIM and GIS Models in Practice: Experiences and Recommendations from a GeoBIM Project in The Netherlands , 2018, ISPRS Int. J. Geo Inf..

[68]  André Borrmann,et al.  Processing of Topological BIM Queries using Boundary Representation Based Methods , 2014, Adv. Eng. Informatics.

[69]  Thomas Krijnen,et al.  Working with Open BIM Standards to Source Legal Spaces for a 3D Cadastre , 2017, ISPRS Int. J. Geo Inf..

[70]  Ernst Rank,et al.  Topological analysis of 3D building models using a spatial query language , 2009, Adv. Eng. Informatics.

[71]  A. Lapierre,et al.  Using Open Web Services for urban data management : A testbed resulting from an OGC initiative for offering standard CAD / GIS / BIM services , 2007 .

[72]  Kereshmeh Afsari,et al.  JavaScript Object Notation (JSON) data serialization for IFC schema in web-based BIM data exchange , 2017 .

[73]  Tf Thomas Krijnen,et al.  Assessing implicit knowledge in BIM models with machine learning , 2015 .

[74]  Raymond E. Levitt,et al.  Global Dimension of Robust Project Network Design , 2010 .

[75]  Jakob Beetz,et al.  Collaborative engineering with IFC : new insights and technology , 2012 .

[76]  Filip Biljecki,et al.  Towards an integration of GIS and BIM data : what are the geometric and topological issues? , 2017 .

[77]  Sebti Foufou,et al.  OntoSTEP: Enriching product model data using ontologies , 2012, Comput. Aided Des..

[78]  Apeksha Gupta,et al.  A conceptual framework to support solar PV simulation using an open-BIM data exchange standard , 2014 .

[79]  F. Alted,et al.  PyTables : Processing And Analyzing Extremely Large Amounts Of Data In Python , 2003 .

[80]  Dave Reynolds,et al.  Efficient RDF Storage and Retrieval in Jena2 , 2003, SWDB.

[81]  Ian Horrocks,et al.  OWL Web Ontology Language Reference-W3C Recommen-dation , 2004 .

[82]  Ling Liu,et al.  Scaling Queries over Big RDF Graphs with Semantic Hash Partitioning , 2013, Proc. VLDB Endow..

[83]  Junghoo Cho,et al.  A fast regular expression indexing engine , 2002, Proceedings 18th International Conference on Data Engineering.

[84]  Jürgen Döllner,et al.  Out-of-Core Visualization of Classified 3D Point Clouds , 2015 .

[85]  G. Giannakis,et al.  Automatic generation of second-level space boundary topology from IFC geometry inputs , 2017 .

[86]  Jyrki Oraskari,et al.  RDF-based signature algorithms for computing differences of IFC models , 2015 .

[87]  P Katranuschkov,et al.  GENERALISED MODEL SUBSET DEFINITION SCHEMA , 2003 .

[88]  Marcelo Arenas,et al.  Semantics and complexity of SPARQL , 2006, TODS.

[89]  Javier Irizarry,et al.  BIM and GIS Integration and Interoperability Based on Semantic Web Technology , 2016, J. Comput. Civ. Eng..

[90]  Werner Nutt,et al.  Basic Description Logics , 2003, Description Logic Handbook.

[91]  Xenia Fiorentini,et al.  OntoSTEP: OWL-DL Ontology for STEP | NIST , 2009 .

[92]  Andreas Donaubauer,et al.  Multi‐Scale Geometric‐Semantic Modeling of Shield Tunnels for GIS and BIM Applications , 2015, Comput. Aided Civ. Infrastructure Eng..

[93]  Axel Polleres,et al.  Binary RDF representation for publication and exchange (HDT) , 2013, J. Web Semant..

[94]  Ana Roxin,et al.  SWRL rule-selection methodology for ontology interoperability , 2016, Data Knowl. Eng..

[95]  Tf Thomas Krijnen,et al.  BIM for robotic manufacturing , 2015 .

[96]  Mustafa Alshawi,et al.  Exploring how information exchanges can be enhanced through cloud BIM , 2012 .

[97]  Ulf Leser,et al.  Querying Distributed RDF Data Sources with SPARQL , 2008, ESWC.

[98]  Russ Rew,et al.  NetCDF: an interface for scientific data access , 1990, IEEE Computer Graphics and Applications.

[99]  Feniosky Peña-Mora,et al.  Integrated Sequential As-Built and As-Planned Representation with D4AR Tools in Support of Decision-Making Tasks in the AEC/FM Industry , 2011 .

[100]  Robin Drogemuller,et al.  Converting the Industry Foundation Classes to the Web Ontology Language , 2005, 2005 First International Conference on Semantics, Knowledge and Grid.

[101]  Reinhard Klein,et al.  Automatic reconstruction of parametric building models from indoor point clouds , 2016, Comput. Graph..

[102]  David Greenwood,et al.  Rapid LEED evaluation performed with BIM based sustainability analysis on a virtual construction project , 2015 .

[103]  Raoul Wessel,et al.  Enrichment and Preservation of Architectural Knowledge , 2016, 3D Research Challenges in Cultural Heritage.

[104]  Michael Wimmer,et al.  Eurographics Symposium on Point-based Graphics (2006) Instant Points: Fast Rendering of Unprocessed Point Clouds , 2022 .

[105]  DigneJulie,et al.  Self-similarity for accurate compression of point sampled surfaces , 2014 .

[106]  Chi Zhang,et al.  BimSPARQL: Domain-specific functional SPARQL extensions for querying RDF building data , 2018, Semantic Web.

[107]  Gerd Heber,et al.  An overview of the HDF5 technology suite and its applications , 2011, AD '11.

[108]  J. Kunz,et al.  The Inspections of As-built Construction Records by 3 D Point Clouds , 2004 .

[109]  Massimiliano Lo Turco,et al.  Architecture data and energy efficiency simulation: BIM and interoperability standards , 2011 .

[110]  Erez Zadok,et al.  Unifying biological image formats with HDF5 , 2009, CACM.

[111]  Derek D. Lichti,et al.  Modeling Terrestrial Laser Scanner Data for Precise Structural Deformation Measurement , 2007 .

[112]  Donald Meagher,et al.  Geometric modeling using octree encoding , 1982, Comput. Graph. Image Process..

[113]  Vladimir Bazjanac,et al.  Reduction, simplification, translation and interpretation in the exchange of model data , 2007 .

[114]  Fernanda Leite,et al.  Evaluation of accuracy of as-built 3D modeling from photos taken by handheld digital cameras , 2012 .

[115]  John Yen,et al.  Integrating BIMserver and OpenStudio for Energy Efficient Building , 2013 .

[116]  Patricio A. Vela,et al.  A Comprehensive Methodology for Vision-Based Progress and Activity Estimation of Excavation Processes for Productivity Assessment , 2014 .

[117]  Tamer E. El-Diraby,et al.  Green 2.0: Socio-Technical Analytics of Green Buildings , 2016 .

[118]  Kay Smarsly,et al.  Generic BIM queries based on the IFC object model using graph theory , 2016 .

[119]  Gregory Piatetsky-Shapiro,et al.  Accurate estimation of the number of tuples satisfying a condition , 1984, SIGMOD '84.

[120]  Uwe Stilla,et al.  A concept for automated construction progress monitoring using BIM-based geometric constraints and photogrammetric point clouds , 2015, J. Inf. Technol. Constr..

[121]  Yehia El-khatib,et al.  Web technologies for environmental Big Data , 2015, Environ. Model. Softw..

[122]  Yaron Kanza,et al.  D2RQ/update: updating relational data via virtual RDF , 2012, WWW.

[123]  L.A.H.M. Berlo,et al.  IFC-based clash detection for the open-source BIMserver , 2010 .

[124]  Jochen Teizer,et al.  Status quo and open challenges in vision-based sensing and tracking of temporary resources on infrastructure construction sites , 2015, Adv. Eng. Informatics.

[125]  Jürgen Döllner,et al.  High-level web service for 3D building information visualization and analysis , 2007, GIS.

[126]  Pieter Pauwels,et al.  EXPRESS to OWL for construction industry: Towards a recommendable and usable ifcOWL ontology , 2016 .

[127]  L. K. Norford,et al.  Two-to-one discrepancy between measured and predicted performance of a ‘low-energy’ office building: insights from a reconciliation based on the DOE-2 model , 1994 .

[128]  Tf Thomas Krijnen,et al.  Methodologies for requirement checking on building models:a technology overview , 2016 .

[129]  Thierry Bertin-Mahieux,et al.  The Million Song Dataset , 2011, ISMIR.

[130]  Ana Roxin,et al.  A performance benchmark over semantic rule checking approaches in construction industry , 2017, Adv. Eng. Informatics.

[131]  Bonsang Koo,et al.  Employing Outlier and Novelty Detection for Checking the Integrity of BIM to IFC Entity Associations , 2017 .

[132]  Jeff Haberl,et al.  Building Information Modeling (BIM)-based daylighting simulation and analysis , 2014 .

[133]  Tamer E. El-Diraby,et al.  BIM-based collaborative design and socio-technical analytics of green buildings , 2017 .

[134]  Ali Ismail,et al.  Application of graph databases and graph theory concepts for advanced analysing of BIM models based on IFC standard , 2017 .

[135]  Mike Folk,et al.  Balancing performance and preservation lessons learned with HDF5 , 2010, US-DPIF '10.

[136]  George Vosselman,et al.  Knowledge based reconstruction of building models from terrestrial laser scanning data , 2009 .

[137]  Emmanuel Maravelakis,et al.  Analysing User Needs for a Unified 3D Metadata Recording and Exploitation of Cultural Heritage Monuments System , 2013, ISVC.

[138]  Raoul Wessel,et al.  Towards extending IFC with point cloud data , 2015 .

[139]  Tf Thomas Krijnen,et al.  A SPARQL query engine for binary-formatted IFC building models , 2018, Automation in Construction.

[140]  Tf Thomas Krijnen,et al.  Combining GIS and BIM for facility reuse - a profiling approach , 2016 .

[141]  Burcu Akinci,et al.  Automatic Reconstruction of As-Built Building Information Models from Laser-Scanned Point Clouds: A Review of Related Techniques | NIST , 2010 .

[142]  Shutao Li,et al.  Proposed Methodology for Generation of Building Information Model with Laserscanning , 2008 .

[143]  Michael F. Cowlishaw,et al.  Decimal floating-point: algorism for computers , 2003, Proceedings 2003 16th IEEE Symposium on Computer Arithmetic.

[144]  Dave Kolas,et al.  Enabling the geospatial Semantic Web with Parliament and GeoSPARQL , 2012, Semantic Web.

[145]  Jeff Haberl,et al.  Developing a physical BIM library for building thermal energy simulation , 2015 .

[146]  Jakob Beetz,et al.  IfcOWL: A case of transforming EXPRESS schemas into ontologies , 2008, Artificial Intelligence for Engineering Design, Analysis and Manufacturing.

[147]  Abraham Lempel,et al.  Compression of individual sequences via variable-rate coding , 1978, IEEE Trans. Inf. Theory.