The three-dimensional cube and scale cube skeleton

The recently introduced cube and scale cube skeleton of Martínez et al. (Graph Models 75:189–207, 2013) are a new type of skeletal representations for polygons or polyhedra enclosed by axis-aligned edges or faces. In this paper, we present efficient algorithms to compute the three-dimensional cube and scale cube skeleton. In addition, we analyze the combinatorial complexity of the three-dimensional cube skeleton. We also introduce the three-dimensional interior cube skeleton, which is homotopically equivalent to the input shape. Finally, we experimentally evaluate the efficiency and robustness of all the presented algorithms and compare the obtained skeletons with other relevant skeletal representations.

[1]  Nina Amenta,et al.  The medial axis of a union of balls , 2001, Comput. Geom..

[2]  Sunghee Choi,et al.  The power crust , 2001, SMA '01.

[3]  M. Pauly,et al.  Discrete scale axis representations for 3D geometry , 2010, ACM Trans. Graph..

[4]  Dinesh Manocha,et al.  Exact computation of the medial axis of a polyhedron , 2004, Comput. Aided Geom. Des..

[5]  Mark Pauly,et al.  The scale axis transform , 2009, SCG '09.

[6]  Alla Sheffer,et al.  PolyCut , 2013, ACM Trans. Graph..

[7]  Hwan Pyo Moon,et al.  MATHEMATICAL THEORY OF MEDIAL AXIS TRANSFORM , 1997 .

[8]  Tamal K. Dey,et al.  Approximate medial axis as a voronoi subcomplex , 2002, SMA '02.

[9]  Hans-Peter Seidel,et al.  Fast parallel surface and solid voxelization on GPUs , 2010, SIGGRAPH 2010.

[10]  Jonàs Martínez,et al.  Eurographics Symposium on Geometry Processing 2011 Skeleton Computation of Orthogonal Polyhedra , 2022 .

[11]  Jean-Daniel Boissonnat,et al.  Skeletal Structures , 2008, Shape Analysis and Structuring.

[12]  M. Pauly,et al.  Discrete scale axis representations for 3D geometry , 2010, SIGGRAPH 2010.

[13]  V. Ralph Algazi,et al.  Continuous skeleton computation by Voronoi diagram , 1991, CVGIP Image Underst..

[14]  Ghassan Hamarneh,et al.  The Groupwise Medial Axis Transform for Fuzzy Skeletonization and Pruning , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[15]  Vijay Srinivasan,et al.  Voronoi Diagram for Multiply-Connected Polygonal Domains I: Algorithm , 1987, IBM J. Res. Dev..

[16]  Jean-Daniel Boissonnat,et al.  Stability and Computation of Medial Axes - a State-of-the-Art Report , 2009, Mathematical Foundations of Scientific Visualization, Computer Graphics, and Massive Data Exploration.

[17]  Franz Aurenhammer,et al.  Voronoi diagrams—a survey of a fundamental geometric data structure , 1991, CSUR.

[18]  Ivan J. Balaban,et al.  An optimal algorithm for finding segments intersections , 1995, SCG '95.

[19]  Nicholas M. Patrikalakis,et al.  An Algorithm for the Medial Axis Transform of 3D Polyhedral Solids , 1996, IEEE Trans. Vis. Comput. Graph..

[20]  Gill Barequet,et al.  Straight Skeletons of Three-Dimensional Polyhedra , 2008, ESA.

[21]  Ari Rappoport,et al.  Computing the Voronoi diagram of a 3-D polyhedron by separate computation of its symbolic and geometric parts , 1999, SMA '99.

[22]  Micha Sharir,et al.  Polyhedral Voronoi Diagrams of Polyhedra in Three Dimensions , 2002, SCG '02.

[23]  Jian Liu,et al.  Computation of the medial axis of planar domains based on saddle point programming , 2011, Comput. Aided Des..

[24]  Micha Sharir,et al.  Davenport-Schinzel sequences and their geometric applications , 1995, Handbook of Computational Geometry.

[25]  Ming C. Lin,et al.  Example-guided physically based modal sound synthesis , 2013, ACM Trans. Graph..

[26]  John Hershberger,et al.  Finding the Upper Envelope of n Line Segments in O(n log n) Time , 1989, Inf. Process. Lett..

[27]  Franz Aurenhammer,et al.  A Novel Type of Skeleton for Polygons , 1996 .

[28]  Erik D. Demaine,et al.  Hinged Dissection of Polypolyhedra , 2005, WADS.

[29]  Jonàs Martínez,et al.  Efficient algorithms for boundary extraction of 2D and 3D orthogonal pseudomanifolds , 2012, Graph. Model..

[30]  Jonàs Martínez,et al.  Skeletal representations of orthogonal shapes , 2013, Graph. Model..

[31]  D. T. Lee,et al.  The Linfty-Voronoi Diagram of Segments and VLSI Applications , 2001, Int. J. Comput. Geom. Appl..

[32]  Micha Sharir,et al.  3-Dimensional Euclidean Voronoi Diagrams of Lines with a Fixed Number of Orientations , 2003, SIAM J. Comput..

[33]  Gábor Székely,et al.  Multiscale Medial Loci and Their Properties , 2003, International Journal of Computer Vision.

[34]  J. Whitehead Simplicial Spaces, Nuclei and m‐Groups , 1939 .

[35]  J. Brandt Convergence and continuity criteria for discrete approximations of the continuous planar skeleton , 1994 .

[36]  Franz Aurenhammer,et al.  Voronoi Diagrams , 2000, Handbook of Computational Geometry.

[37]  Franz Aurenhammer,et al.  Exact Medial Axis Computation for Triangulated Solids with Respect to Piecewise Linear Metrics , 2010, Curves and Surfaces.

[38]  Marc Vigo Anglada,et al.  An improved incremental algorithm for constructing restricted delaunay triangulations , 1997, Comput. Graph..

[39]  George M. Turkiyyah,et al.  Computation of 3D skeletons using a generalized Delaunay triangulation technique , 1995, Comput. Aided Des..

[40]  Kaleem Siddiqi,et al.  Sampled medial loci for 3D shape representation , 2011, Comput. Vis. Image Underst..

[41]  Dominique Attali,et al.  Computing and Simplifying 2D and 3D Continuous Skeletons , 1997, Comput. Vis. Image Underst..

[42]  Dinesh Manocha,et al.  Homotopy-preserving medial axis simplification , 2005, SPM '05.

[43]  Michael Ian Shamos,et al.  Computational geometry: an introduction , 1985 .

[44]  Kaleem Siddiqi,et al.  Medial Representations: Mathematics, Algorithms and Applications , 2008 .

[45]  Elaine Cohen,et al.  Generalized Swept Mid‐structure for Polygonal Models , 2012, Comput. Graph. Forum.

[46]  Jonàs Martínez,et al.  A practical and robust method to compute the boundary of three-dimensional axis-aligned boxes , 2014, 2014 International Conference on Computer Graphics Theory and Applications (GRAPP).

[47]  David G. Kirkpatrick,et al.  Optimal Search in Planar Subdivisions , 1983, SIAM J. Comput..

[48]  Hans-Peter Seidel,et al.  Skeleton‐based Variational Mesh Deformations , 2007, Comput. Graph. Forum.

[49]  F. Chazal,et al.  The λ-medial axis , 2005 .