Stabilizing cobalt catalysts for aqueous-phase reactions by strong metal-support interaction

[1]  David H. K. Jackson,et al.  Enhanced Activity and Stability of TiO2-Coated Cobalt/Carbon Catalysts for Electrochemical Water Oxidation , 2015 .

[2]  James A. Dumesic,et al.  Catalyst Design with Atomic Layer Deposition , 2015 .

[3]  Bert F. Sels,et al.  Direct catalytic conversion of cellulose to liquid straight-chain alkanes , 2015 .

[4]  R. Rinaldi,et al.  Catalytic biorefining of plant biomass to non-pyrolytic lignin bio-oil and carbohydrates through hydrogen transfer reactions. , 2014, Angewandte Chemie.

[5]  R. Schlögl,et al.  Strong metal-support interactions between palladium and iron oxide and their effect on CO oxidation , 2014 .

[6]  K. Tomishige,et al.  Performance and characterization of rhenium-modified Rh–Ir alloy catalyst for one-pot conversion of furfural into 1,5-pentanediol , 2014 .

[7]  K. Tomishige,et al.  One-Pot Conversion of Cellulose into n-Hexane over the Ir-ReOx/SiO2 Catalyst Combined with HZSM-5 , 2014 .

[8]  David H. K. Jackson,et al.  Enhanced stability of cobalt catalysts by atomic layer deposition for aqueous-phase reactions , 2014 .

[9]  Christos T. Maravelias,et al.  Production of renewable jet fuel range alkanes and commodity chemicals from integrated catalytic processing of biomass , 2014 .

[10]  Felix H. Richter,et al.  Platinum-cobalt bimetallic nanoparticles in hollow carbon nanospheres for hydrogenolysis of 5-hydroxymethylfurfural. , 2014, Nature materials.

[11]  G. Somorjai,et al.  Evidence of highly active cobalt oxide catalyst for the Fischer-Tropsch synthesis and CO2 hydrogenation. , 2014, Journal of the American Chemical Society.

[12]  K. Tomishige,et al.  One-pot selective conversion of furfural into 1,5-pentanediol over a Pd-added Ir–ReOx/SiO2 bifunctional catalyst , 2014 .

[13]  Ye Xu,et al.  Effects of hydrogen and water on the activity and selectivity of acetic acid hydrogenation on ruthenium , 2014 .

[14]  G. Huber,et al.  Aqueous-phase hydrogenation and hydrodeoxygenation of biomass-derived oxygenates with bimetallic catalysts , 2014 .

[15]  David H. K. Jackson,et al.  Stabilization of copper catalysts for liquid-phase reactions by atomic layer deposition. , 2013, Angewandte Chemie.

[16]  G. Huber,et al.  Modeling aqueous-phase hydrodeoxygenation of sorbitol over Pt/SiO2–Al2O3 , 2013 .

[17]  K. Tomishige,et al.  Catalytic Reduction of Biomass-Derived Furanic Compounds with Hydrogen , 2013 .

[18]  G. Tompsett,et al.  The electrocatalytic hydrogenation of furanic compounds in a continuous electrocatalytic membrane reactor , 2013 .

[19]  Yanliang Yang,et al.  Conversion of furfural into cyclopentanone over Ni–Cu bimetallic catalysts , 2013 .

[20]  R. Schlögl,et al.  The role of the oxide component in the development of copper composite catalysts for methanol synthesis. , 2013, Angewandte Chemie.

[21]  Landong Li,et al.  Understanding the effect of surface/bulk defects on the photocatalytic activity of TiO2: anatase versus rutile. , 2013, Physical chemistry chemical physics : PCCP.

[22]  Hydroprocessing Bio-Oil and Products Separation for Coke Production , 2013 .

[23]  Chen Zhao,et al.  Ni-catalyzed cleavage of aryl ethers in the aqueous phase. , 2012, Journal of the American Chemical Society.

[24]  Bin Zhang,et al.  Selective conversion of furfuryl alcohol to 1,2-pentanediol over a Ru/MnOx catalyst in aqueous phase , 2012 .

[25]  K. Tomishige,et al.  Production of 1,5-pentanediol from biomass via furfural and tetrahydrofurfuryl alcohol , 2012 .

[26]  T. Liptaj,et al.  Effect of catalyst and solvent on the furan ring rearrangement to cyclopentanone , 2012 .

[27]  Lin-wang Wang,et al.  Furfuraldehyde hydrogenation on titanium oxide-supported platinum nanoparticles studied by sum frequency generation vibrational spectroscopy: acid-base catalysis explains the molecular origin of strong metal-support interactions. , 2012, Journal of the American Chemical Society.

[28]  R. Rinaldi,et al.  Exploiting H-transfer reactions with RANEY® Ni for upgrade of phenolic and aromatic biorefinery feeds under unusual, low-severity conditions , 2012 .

[29]  Mariefel V. Olarte,et al.  Catalytic Hydroprocessing of Fast Pyrolysis Bio-oil from Pine Sawdust , 2012 .

[30]  D. Mishra,et al.  Catalytic hydrogenation of xylose to xylitol using ruthenium catalyst on NiO modified TiO2 support , 2012 .

[31]  Ping Liu,et al.  A new type of strong metal-support interaction and the production of H2 through the transformation of water on Pt/CeO2(111) and Pt/CeO(x)/TiO2(110) catalysts. , 2012, Journal of the American Chemical Society.

[32]  G. Xiao,et al.  Coking- and Sintering-Resistant Palladium Catalysts Achieved Through Atomic Layer Deposition , 2012, Science.

[33]  Jean-Paul Lange,et al.  Furfural--a promising platform for lignocellulosic biofuels. , 2012, ChemSusChem.

[34]  D. Resasco,et al.  Selective conversion of furfural to methylfuran over silica-supported NiFe bimetallic catalysts , 2011 .

[35]  Robert J. Davis,et al.  Selective hydrogenolysis of polyols and cyclic ethers over bifunctional surface sites on rhodium-rhenium catalysts. , 2011, Journal of the American Chemical Society.

[36]  D. Resasco,et al.  Conversion of furfural and 2-methylpentanal on Pd/SiO 2 and PdCu/SiO 2 catalysts , 2011 .

[37]  Xiao-hui Liu,et al.  Direct catalytic conversion of furfural to 1,5-pentanediol by hydrogenolysis of the furan ring under mild conditions over Pt/Co2AlO4 catalyst. , 2011, Chemical communications.

[38]  Heiji Enomoto,et al.  Rapid and highly selective conversion of biomass into value-added products in hydrothermal conditions: chemistry of acid/base-catalysed and oxidation reactions , 2011 .

[39]  D. M. Alonso,et al.  Catalytic conversion of biomass to biofuels , 2010 .

[40]  J. Greeley Structural effects on trends in the deposition and dissolution of metal-supported metal adstructures , 2010 .

[41]  George W. Huber,et al.  Aqueous-phase hydrodeoxygenation of sorbitol with Pt/SiO2―Al2O3: Identification of reaction intermediates , 2010 .

[42]  James A. Dumesic,et al.  Dual-bed catalyst system for C–C coupling of biomass-derived oxygenated hydrocarbons to fuel-grade compounds , 2010 .

[43]  Tao Zhang,et al.  Direct catalytic conversion of cellulose into ethylene glycol using nickel-promoted tungsten carbide catalysts. , 2008, Angewandte Chemie.

[44]  Juan Carlos Serrano-Ruiz,et al.  Catalytic Conversion of Biomass to Monofunctional Hydrocarbons and Targeted Liquid-Fuel Classes , 2008, Science.

[45]  Jing Jiang,et al.  Synthesis of sphere-like Co3O4 nanocrystals via a simple polyol route , 2007 .

[46]  G. Huber,et al.  Liquid-phase catalytic processing of biomass-derived oxygenated hydrocarbons to fuels and chemicals. , 2007, Angewandte Chemie.

[47]  V. V. Mahajani,et al.  Kinetics of Liquid-Phase Hydrogenation of Furfuryl Alcohol to Tetrahydrofurfuryl Alcohol over a Ru/TiO2 Catalyst , 2007 .

[48]  P. Gallezot,et al.  Highly efficient metal catalysts supported on activated carbon cloths: A catalytic application for the hydrogenation of d-glucose to d-sorbitol , 2007 .

[49]  M. Schlaf Selective deoxygenation of sugar polyols to α,ω-diols and other oxygen content reduced materials—a new challenge to homogeneous ionic hydrogenation and hydrogenolysis catalysis , 2006 .

[50]  A. Corma,et al.  Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering. , 2006, Chemical reviews.

[51]  James A. Dumesic,et al.  An overview of aqueous-phase catalytic processes for production of hydrogen and alkanes in a biorefinery , 2006 .

[52]  P. Praserthdam,et al.  Impact of Ti3+ Present in Titania on Characteristics and Catalytic Properties of the Co/TiO2 Catalyst , 2005 .

[53]  G. Huber,et al.  Production of Liquid Alkanes by Aqueous-Phase Processing of Biomass-Derived Carbohydrates , 2005, Science.

[54]  B. Weckhuysen,et al.  In Situ X-ray Absorption of Co/Mn/TiO2 Catalysts for Fischer−Tropsch Synthesis , 2004 .

[55]  G. Huber,et al.  Renewable alkanes by aqueous-phase reforming of biomass-derived oxygenates. , 2004, Angewandte Chemie.

[56]  J. Nørskov,et al.  Atomic-scale imaging of carbon nanofibre growth , 2004, Nature.

[57]  V. V. Mahajani,et al.  Kinetics of Liquid-Phase Hydrogenation of Furfuraldehyde to Furfuryl Alcohol over a Pt/C Catalyst , 2003 .

[58]  P. Gallezot,et al.  Deactivation of metal catalysts in liquid phase organic reactions , 2003 .

[59]  Zhipan Liu,et al.  General rules for predicting where a catalytic reaction should occur on metal surfaces: a density functional theory study of C-H and C-O bond breaking/making on flat, stepped, and kinked metal surfaces. , 2003, Journal of the American Chemical Society.

[60]  Roger A. Sheldon,et al.  Activities and stabilities of heterogeneous catalysts in selective liquid phase oxidations: recent developments , 2001 .

[61]  C. H. Bartholomew Mechanisms of catalyst deactivation , 2001 .

[62]  Tapio Salmi,et al.  Deactivation kinetics of Mo-supported Raney Ni catalyst in the hydrogenation of xylose to xylitol , 2000 .

[63]  Tapio Salmi,et al.  Xylose hydrogenation: kinetic and NMR studies of the reaction mechanisms , 1999 .

[64]  Alain Perrard,et al.  Glucose Hydrogenation on Ruthenium Catalysts in a Trickle-Bed Reactor , 1998 .

[65]  S. Stevenson Metal-support interactions in catalysis, sintering, and redispersion , 1987 .

[66]  J. Dumesic,et al.  Migration of nickel and titanium oxide species as studied by in situ scanning transmission electron microscopy , 1986 .

[67]  S. Tauster Strong metal-support interactions , 1986 .

[68]  D. Resasco,et al.  A model of metal-oxide support interaction for Rh on TiO2 , 1983 .

[69]  J. Dumesic,et al.  Metal-support interactions between iron and titania for catalysts prepared by thermal decomposition of iron pentacarbonyl and by impregnation , 1983 .

[70]  S. C. Fung,et al.  Strong metal-support interactions. Group 8 noble metals supported on titanium dioxide , 1978 .