Permutability of Proofs in Intuitionistic Sequent Calculi

Abstract We prove a folklore theorem, that two derivations in a cut-free sequent calculus for intuitionistic propositional logic (based on Kleene's G3) are inter-permutable (using a set of basic “permutation reduction rules” derived from Kleene's work in 1952) iff they determine the same natural deduction. The basic rules form a confluent and weakly normalising rewriting system. We refer to Schwichtenberg's proof elsewhere that a modification of this system is strongly normalising.

[1]  David J. Pym,et al.  Proof-search in the lII-calculus , 1991 .

[2]  J. Girard,et al.  Proofs and types , 1989 .

[3]  Garrel Pottinger,et al.  Normalization as a homomorphic image of cut-elimination , 1977 .

[4]  S. C. Kleene,et al.  Introduction to Metamathematics , 1952 .

[5]  H.A.J.M. Schellinx,et al.  The noble art of linear decorating , 1994 .

[6]  Gianluigi Bellin,et al.  Advances in Linear Logic: Empires and kingdoms in MLL - , 1995 .

[7]  W. V. Quine,et al.  Natural deduction , 2021, An Introduction to Proof Theory.

[8]  William A. Howard,et al.  The formulae-as-types notion of construction , 1969 .

[9]  A. G. Dragálin Mathematical Intuitionism. Introduction to Proof Theory , 1988 .

[10]  Gopalan Nadathur,et al.  Uniform Proofs as a Foundation for Logic Programming , 1991, Ann. Pure Appl. Log..

[11]  G. L. Collected Papers , 1912, Nature.

[12]  JEAN-MARC ANDREOLI,et al.  Logic Programming with Focusing Proofs in Linear Logic , 1992, J. Log. Comput..

[13]  J. Zucker The correspondence between cut-elimination and normalization II , 1974 .

[14]  M. DAVIDIAN,et al.  14. References , 1953 .

[15]  J. Girard,et al.  Advances in Linear Logic , 1995 .

[16]  Daniel Leivant Assumption Classes in Natural Deduction , 1979, Math. Log. Q..

[17]  Luís Pinto,et al.  Uniform Proofs and Natural Deduction , 1994, ICLP Workshop: Proof-Theoretical Extensions on Logic Programming.

[18]  Roy Dyckhoff,et al.  Uniform proofs and natural deductions , 1994 .

[19]  Helmut Schwichtenberg Termination of Permutative Conversions in Intuitionistic Gentzen Calculi , 1999, Theor. Comput. Sci..

[20]  Roy Dyckhoff,et al.  Contraction-free sequent calculi for intuitionistic logic , 1992, Journal of Symbolic Logic.

[21]  M. E. Szabo,et al.  The collected papers of Gerhard Gentzen , 1969 .

[22]  Hugo Herbelin,et al.  A Lambda-Calculus Structure Isomorphic to Gentzen-Style Sequent Calculus Structure , 1994, CSL.

[23]  Andrew A. Adams Tools and techniques for machine-assisted meta-theory , 1997 .

[24]  Lev Gordeev,et al.  Basic proof theory , 1998 .

[25]  Luis Filipe Ribeiro Pinto Proof-theoretic investigations into integrated logical and functional programming , 1997 .

[26]  Luís Pinto,et al.  Cut-Elimination and a Permutation-Free Sequent Calculus for Intuitionistic Logic , 1998, Stud Logica.