Multispectral Cesaro-Type Fractal Plasmonic Nanoantennas

Fractal-shaped nanoantennas have a large potential to enable multiband devices for surface-enhanced spectroscopy due to their scale-invariant geometry that gives rise to strongly enhanced local fields across different spectral ranges with multiscale spatial distributions. In particular, fractal nanoantennas based on plasmonic metals are promising for biodetection applications that extend from the near-infrared across the mid-infrared spectrum. In this context, we introduce novel multiscale resonant structures based on the inverse Cesaro space-filling fractal curve with the remarkable property that the number of resonant bands does not depend on the overall size of the structures. We systematically study their scattering and near-field resonant properties by resorting to full-field finite difference time domain simulations in combination with experimental Fourier transform infrared microspectroscopy. In particular, by investigating a number of gold antennas fabricated by electron-beam lithography on CaF2 s...

[1]  Volker J. Sorger,et al.  Integrated Nanocavity Plasmon Light Sources for On-Chip Optical Interconnects , 2016 .

[2]  M. Dressel,et al.  High-Order Hilbert Curves: Fractal Structures with Isotropic, Tailorable Optical Properties , 2015 .

[3]  Xiaodong Yang,et al.  Ultrasensitive detection and characterization of molecules with infrared plasmonic metamaterials , 2015, Scientific Reports.

[4]  D. Werner,et al.  Tuning the optical response of a dimer nanoantenna using plasmonic nanoring loads , 2015, Scientific Reports.

[5]  Naomi J. Halas,et al.  Fractal nanoparticle plasmonics: the Cayley tree. , 2015, ACS nano.

[6]  Rowdra Ghatak,et al.  A Dielectric Resonator-Loaded Minkowski Fractal-Shaped Slot Loop Heptaband Antenna , 2015, IEEE Transactions on Antennas and Propagation.

[7]  Andrea Alù,et al.  The quest for optical magnetism: from split-ring resonators to plasmonic nanoparticles and nanoclusters , 2014 .

[8]  J. Li,et al.  Optical responses of magnetic-vortex resonance in double-disk metamaterial variations , 2014 .

[9]  Pierre Berini,et al.  Surface plasmon photodetectors and their applications , 2014 .

[10]  X. W. Sun,et al.  Fractal diabolo antenna for enhancing and confining the optical magnetic field , 2014 .

[11]  Photonic-plasmonic-coupled nanoantennas for polarization-controlled multispectral nanofocusing. , 2013, Optics letters.

[12]  Miguel Beruete,et al.  Plasmonic Nanoantennas for Multispectral Surface-Enhanced Spectroscopies , 2013 .

[13]  Ronen Adato,et al.  In-situ ultra-sensitive infrared absorption spectroscopy of biomolecule interactions in real time with plasmonic nanoantennas , 2013, Nature Communications.

[14]  Weida Hu,et al.  Fractal H-shaped plasmonic nanocavity , 2013, Nanotechnology.

[15]  Ru-Wen Peng,et al.  Broadband absorption and efficiency enhancement of an ultra-thin silicon solar cell with a plasmonic fractal. , 2013, Optics express.

[16]  Xiaobo Yin,et al.  All-optical Hall effect by the dynamic toroidal moment in a cavity-based metamaterial , 2013, 1303.4577.

[17]  J. Aizpurua,et al.  Experimental verification of the spectral shift between near- and far-field peak intensities of plasmonic infrared nanoantennas. , 2013, Physical review letters.

[18]  Mohsen Rahmani,et al.  Ultrasensitive broadband probing of molecular vibrational modes with multifrequency optical antennas. , 2013, ACS nano.

[19]  R. Adato,et al.  Dual-band perfect absorber for multispectral plasmon-enhanced infrared spectroscopy. , 2012, ACS nano.

[20]  Din Ping Tsai,et al.  Design of plasmonic toroidal metamaterials at optical frequencies. , 2012, Optics express.

[21]  M. Scully,et al.  Multi-wavelength mid-infrared plasmonic antennas with single nanoscale focal point. , 2011, Optics express.

[22]  Saulius Juodkazis,et al.  Sierpin´ski fractal plasmonic nanoantennas , 2011 .

[23]  S. Sederberg,et al.  Sierpiński fractal plasmonic antenna: a fractal abstraction of the plasmonic bowtie antenna. , 2011, Optics express.

[24]  Giorgio Volpe,et al.  Fractal plasmonics: subdiffraction focusing and broadband spectral response by a Sierpinski nanocarpet. , 2011, Optics express.

[25]  Luca Dal Negro,et al.  Multiple-wavelength plasmonic nanoantennas. , 2010, Optics letters.

[26]  David L. Kaplan,et al.  Ultra-sensitive vibrational spectroscopy of protein monolayers with plasmonic nanoantenna arrays , 2009, Proceedings of the National Academy of Sciences.

[27]  Nicola A. Spaldin,et al.  The toroidal moment in condensed-matter physics and its relation to the magnetoelectric effect , 2008 .

[28]  N. Zheludev,et al.  Ultrafast active plasmonics: transmission and control of femtosecond plasmon signals , 2008, 0807.2542.

[29]  X. Wang,et al.  Preparation and Characterization of Mesoporous Zirconia Made by Using a Poly (methyl methacrylate) Template , 2008, Nanoscale research letters.

[30]  M. Takeda,et al.  Terahertz electric response of fractal metamaterial structures , 2008 .

[31]  Bo Zhang,et al.  Surface-plasmon-enhanced transmission through metallic film perforated with fractal-featured aperture array , 2007 .

[32]  A. Hoorfar,et al.  Space-filling curve RFID tags , 2006, 2006 IEEE Radio and Wireless Symposium.

[33]  THz fractal antennas for electrical and optical semiconductor emitters and receptors , 2004 .

[34]  P. Sheng,et al.  Theoretical Studies on the Transmission and Reflection Properties of Metallic Planar Fractals , 2004 .

[35]  D. Bergman,et al.  Self-similar chain of metal nanospheres as efficient nanolens , 2003, InternationalQuantum Electronics Conference, 2004. (IQEC)..

[36]  A. Hoorfar,et al.  Bandwidth, cross-polarization, and feed-point characteristics of matched Hilbert antennas , 2003, IEEE Antennas and Wireless Propagation Letters.

[37]  G. Vaman,et al.  Exact calculation of the angular momentum loss, recoil force, and radiation intensity for an arbitrary source in terms of electric, magnetic, and toroid multipoles. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[38]  G. N. Afanasiev Simplest sources of electromagnetic fields as a tool for testing the reciprocity-like theorems , 2001 .

[39]  Masatoshi Osawa,et al.  Surface-Enhanced Infrared Absorption , 2001 .

[40]  Raj Mittra,et al.  Frontiers in electromagnetics , 1999 .

[41]  G. N. Afanasiev,et al.  Some remarkable charge–current configurations , 1998 .

[42]  H. Ishida,et al.  Kramers-Kronig analysis applied to reflection-absorption spectroscopy , 1997 .

[43]  H. Ishida,et al.  Application of differential absorption in infrared spectroscopy , 1997 .

[44]  R. Pous,et al.  Fractal design of multiband and low side-lobe arrays , 1996 .

[45]  H. Ishida,et al.  Optical theory applied to infrared spectroscopy , 1994 .

[46]  V. M. Dubovik,et al.  Toroid moments in electrodynamics and solid-state physics , 1990 .

[47]  Dwight L. Jaggard,et al.  On Fractal Electrodynamics , 1990 .