Geometric aspects of the theory of Krylov subspace methods

The development of Krylov subspace methods for the solution of operator equations has shown that two basic construction principles underlie the most commonly used algorithms: the orthogonal residual (OR) and minimal residual (MR) approaches. It is shown that these can both be formulated as techniques for solving an approximation problem on a sequence of nested subspaces of a Hilbert space, an abstract problem not necessarily related to an operator equation. Essentially all Krylov subspace algorithms result when these subspaces form a Krylov sequence. The well-known relations among the iterates and residuals of MR/OR pairs are shown to hold also in this rather general setting. We further show that a common error analysis for these methods involving the canonical angles between subspaces allows many of the known residual and error bounds to be derived in a simple and consistent manner. An application of this analysis to compact perturbations of the identity shows that MR/OR pairs of Krylov subspace methods converge q-superlinearly when applied to such operator equations.

[1]  C. Lanczos An iteration method for the solution of the eigenvalue problem of linear differential and integral operators , 1950 .

[2]  M. Hestenes,et al.  Methods of conjugate gradients for solving linear systems , 1952 .

[3]  C. Lanczos Solution of Systems of Linear Equations by Minimized Iterations1 , 1952 .

[4]  Tosio Kato Estimation of Iterated Matrices, with application to the von Neumann condition , 1960 .

[5]  Chandler Davis The rotation of eigenvectors by a perturbation , 1963 .

[6]  Alston S. Householder,et al.  The Theory of Matrices in Numerical Analysis , 1964 .

[7]  R. Meyer,et al.  Topics in the analytic theory matrices , 1967 .

[8]  W. Kahan,et al.  The Rotation of Eigenvectors by a Perturbation. III , 1970 .

[9]  J. Ringrose Compact non-self-adjoint operators , 1971 .

[10]  T. N. E. Greville,et al.  Solutions of the Matrix Equation $XAX = X$, and Relations between Oblique and Orthogonal Projectors , 1974 .

[11]  M. Saunders,et al.  Solution of Sparse Indefinite Systems of Linear Equations , 1975 .

[12]  T. Manteuffel The Tchebychev iteration for nonsymmetric linear systems , 1977 .

[13]  R. Winther Some Superlinear Convergence Results for the Conjugate Gradient Method , 1980 .

[14]  Y. Saad Krylov subspace methods for solving large unsymmetric linear systems , 1981 .

[15]  Y. Saad The Lanczos Biorthogonalization Algorithm and Other Oblique Projection Methods for Solving Large Unsymmetric Systems , 1982 .

[16]  H. Elman Iterative methods for large, sparse, nonsymmetric systems of linear equations , 1982 .

[17]  S. Eisenstat,et al.  Variational Iterative Methods for Nonsymmetric Systems of Linear Equations , 1983 .

[18]  P. Wedin On angles between subspaces of a finite dimensional inner product space , 1983 .

[19]  Gene H. Golub,et al.  Matrix computations , 1983 .

[20]  Y. Saad,et al.  GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .

[21]  Leslie Greengard,et al.  A fast algorithm for particle simulations , 1987 .

[22]  W. Hackbusch,et al.  On the fast matrix multiplication in the boundary element method by panel clustering , 1989 .

[23]  P. Sonneveld CGS, A Fast Lanczos-Type Solver for Nonsymmetric Linear systems , 1989 .

[24]  O. Nevanlinna,et al.  Accelerating with rank-one updates , 1989 .

[25]  T. Manteuffel,et al.  A taxonomy for conjugate gradient methods , 1990 .

[26]  Peter N. Brown,et al.  A Theoretical Comparison of the Arnoldi and GMRES Algorithms , 1991, SIAM J. Sci. Comput..

[27]  Charles R. Johnson,et al.  Topics in Matrix Analysis , 1991 .

[28]  H. A. van der Vorst,et al.  GMRESR : A family of nested GMRES methods Report 91-80 , 1991 .

[29]  R. Freund,et al.  QMR: a quasi-minimal residual method for non-Hermitian linear systems , 1991 .

[30]  R. Freund Quasi-kernel polynomials and their use in non-Hermitian matrix iterations , 1992 .

[31]  Henk A. van der Vorst,et al.  Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for the Solution of Nonsymmetric Linear Systems , 1992, SIAM J. Sci. Comput..

[32]  G. Golub,et al.  Iterative solution of linear systems , 1991, Acta Numerica.

[33]  Martin H. Gutknecht,et al.  Variants of BICGSTAB for Matrices with Complex Spectrum , 1993, SIAM J. Sci. Comput..

[34]  Michael Eiermann,et al.  Fields of values and iterative methods , 1993 .

[35]  Martin H. Gutknecht,et al.  Changing the norm in conjugate gradient type algorithms , 1993 .

[36]  Yousef Saad,et al.  A Flexible Inner-Outer Preconditioned GMRES Algorithm , 1993, SIAM J. Sci. Comput..

[37]  Roland W. Freund,et al.  A Transpose-Free Quasi-Minimal Residual Algorithm for Non-Hermitian Linear Systems , 1993, SIAM J. Sci. Comput..

[38]  Roland W. Freund,et al.  An Implementation of the Look-Ahead Lanczos Algorithm for Non-Hermitian Matrices , 1993, SIAM J. Sci. Comput..

[39]  Cornelis Vuik,et al.  GMRESR: a family of nested GMRES methods , 1994, Numer. Linear Algebra Appl..

[40]  Rüdiger Weiss,et al.  Properties of generalized conjugate gradient methods , 1994, Numer. Linear Algebra Appl..

[41]  Tony F. Chan,et al.  A Quasi-Minimal Residual Variant of the Bi-CGSTAB Algorithm for Nonsymmetric Systems , 1994, SIAM J. Sci. Comput..

[42]  G. Golub,et al.  Recent advances in iterative methods , 1994 .

[43]  Wayne Joubert,et al.  On the convergence behavior of the restarted GMRES algorithm for solving nonsymmetric linear systems , 1994, Numer. Linear Algebra Appl..

[44]  Homer F. Walker,et al.  A simpler GMRES , 1994, Numer. Linear Algebra Appl..

[45]  R. Freund,et al.  Transpose-Free Quasi-Minimal Residual Methods for Non-Hermitian Linear Systems , 1994 .

[46]  Homer F. Walker,et al.  Residual Smoothing Techniques for Iterative Methods , 1994, SIAM J. Sci. Comput..

[47]  Homer F. Walker,et al.  Residual smoothing and peak/plateau behavior in Krylov subspace methods , 1995 .

[48]  Miroslav Tuma,et al.  On the Role of Orthogonality in the GMRES Method , 1996, SOFSEM.

[49]  K. Gustafson,et al.  Numerical Range: The Field Of Values Of Linear Operators And Matrices , 1996 .

[50]  Anne Greenbaum,et al.  Any Nonincreasing Convergence Curve is Possible for GMRES , 1996, SIAM J. Matrix Anal. Appl..

[51]  B. Fischer Polynomial Based Iteration Methods for Symmetric Linear Systems , 1996 .

[52]  Anne Greenbaum,et al.  Relations between Galerkin and Norm-Minimizing Iterative Methods for Solving Linear Systems , 1996, SIAM J. Matrix Anal. Appl..

[53]  I. Moret A Note on the Superlinear Convergence of GMRES , 1997 .

[54]  G. Starke Field-of-values analysis of preconditioned iterative methods for nonsymmetric elliptic problems , 1997 .

[55]  M. Rozložník,et al.  Numerical behaviour of the modified gram-schmidt GMRES implementation , 1997 .

[56]  Martin H. Gutknecht,et al.  Lanczos-type solvers for nonsymmetric linear systems of equations , 1997, Acta Numerica.

[57]  Gene H. Golub,et al.  Closer to the solutions: iterative linear solvers , 1997 .

[58]  M. SIAMJ.,et al.  RESIDUAL-MINIMIZING KRYLOV SUBSPACE METHODS FOR STABILIZED DISCRETIZATIONS OF CONVECTION-DIFFUSION EQUATIONS∗ , 1998 .

[59]  Marlis Hochbruck,et al.  Error Analysis of Krylov Methods In a Nutshell , 1998, SIAM J. Sci. Comput..

[60]  Martin H. Gutknecht,et al.  QMR Smoothing for Lanczos-Type Product Methods Based on Three-Term Rrecurrences , 1998, SIAM J. Sci. Comput..

[61]  Yousef Saad,et al.  Modified Krylov acceleration for parallel environments , 1999 .

[62]  M. Embree How Descriptive are GMRES Convergence Bounds? , 1999, ArXiv.

[63]  G. Meurant Computer Solution of Large Linear Systems , 1999 .

[64]  E. Sturler,et al.  Truncation Strategies for Optimal Krylov Subspace Methods , 1999 .

[65]  Y. Saad,et al.  Iterative solution of linear systems in the 20th century , 2000 .

[66]  Jörg Liesen,et al.  Computable Convergence Bounds for GMRES , 2000, SIAM J. Matrix Anal. Appl..

[67]  Ronald B. Morgan,et al.  Implicitly Restarted GMRES and Arnoldi Methods for Nonsymmetric Systems of Equations , 2000, SIAM J. Matrix Anal. Appl..

[68]  Oliver G. Ernst,et al.  Analysis of acceleration strategies for restarted minimal residual methods , 2000 .

[69]  Yousef Saad Further analysis of minimum residual iterations , 2000, Numer. Linear Algebra Appl..

[70]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .