Quantum approximate optimization algorithm for qudit systems

A frequent starting point of quantum computation platforms are two-state quantum systems, i.e., qubits. However, in the context of integer optimization problems, relevant to scheduling optimization and operations research, it is often more resource-efficient to employ quantum systems with more than two basis states, so-called qudits. Here, we discuss the quantum approximate optimization algorithm (QAOA) for qudit systems. We illustrate how the QAOA can be used to formulate a variety of integer optimization problems such as graph coloring problems or electric vehicle (EV) charging optimization. In addition, we comment on the implementation of constraints and describe three methods to include these into a quantum circuit of a QAOA by penalty contributions to the cost Hamiltonian, conditional gates using ancilla qubits, and a dynamical decoupling strategy. Finally, as a showcase of qudit-based QAOA, we present numerical results for a charging optimization problem mapped onto a max-$k$-graph coloring problem. Our work illustrates the flexibility of qudit systems to solve integer optimization problems.

[1]  Thomas Bäck,et al.  Quantum annealing for industry applications: introduction and review , 2021, Reports on progress in physics. Physical Society.

[2]  R. Boucherie,et al.  Solving correlation clustering with QAOA and a Rydberg qudit system: a full-stack approach , 2021, Quantum.

[3]  Julian F. Wienand,et al.  Programmable interactions and emergent geometry in an array of atom clouds , 2021, Nature.

[4]  J. Thompson,et al.  Quantum Computing with Circular Rydberg Atoms , 2021, PRX Quantum.

[5]  T. Stollenwerk,et al.  Performance of Domain-Wall Encoding for Quantum Annealing , 2021, IEEE Transactions on Quantum Engineering.

[6]  S. Perdrix,et al.  Qualifying quantum approaches for hard industrial optimization problems. A case study in the field of smart-charging of electric vehicles , 2020, EPJ Quantum Technology.

[7]  M. Lewenstein,et al.  Non-Abelian gauge invariance from dynamical decoupling , 2020, Physical Review D.

[8]  Robert Koenig,et al.  Hybrid quantum-classical algorithms for approximate graph coloring , 2020, Quantum.

[9]  M. Lewenstein,et al.  Universal quantum computation and quantum error correction with ultracold atomic mixtures , 2020, Quantum Science and Technology.

[10]  Emily J. Davis,et al.  Number Partitioning with Grover's Algorithm in Central Spin Systems , 2020, 2009.05549.

[11]  I. Siddiqi,et al.  Qutrit Randomized Benchmarking. , 2020, Physical review letters.

[12]  Masoud Mohseni,et al.  Low-Depth Mechanisms for Quantum Optimization , 2020, PRX Quantum.

[13]  B. Sanders,et al.  Qudits and High-Dimensional Quantum Computing , 2020, Frontiers in Physics.

[14]  Jad C. Halimeh,et al.  Gauge-Symmetry Protection Using Single-Body Terms , 2020, PRX Quantum.

[15]  Steffen Limmer,et al.  Optimizing the Hyperparameters of a Mixed Integer Linear Programming Solver to Speed up Electric Vehicle Charging Control , 2020, EvoApplications.

[16]  Costin Iancu,et al.  Classical Optimizers for Noisy Intermediate-Scale Quantum Devices , 2020, 2020 IEEE International Conference on Quantum Computing and Engineering (QCE).

[17]  H. Calandra,et al.  To quantum or not to quantum: towards algorithm selection in near-term quantum optimization , 2020, Quantum Science and Technology.

[18]  Joel Nothman,et al.  SciPy 1.0-Fundamental Algorithms for Scientific Computing in Python , 2019, ArXiv.

[19]  F. Jin,et al.  Benchmarking the quantum approximate optimization algorithm , 2019, Quantum Inf. Process..

[20]  Hsuan-Hao Lu,et al.  Quantum Phase Estimation with Time‐Frequency Qudits in a Single Photon , 2019, Advanced Quantum Technologies.

[21]  G. Consigli,et al.  Optimization Methods in Finance , 2019, Quantitative Finance.

[22]  Helmut G. Katzgraber,et al.  Perspectives of quantum annealing: methods and implementations , 2019, Reports on progress in physics. Physical Society.

[23]  Nicholas Chancellor,et al.  Domain wall encoding of discrete variables for quantum annealing and QAOA , 2019, Quantum Science and Technology.

[24]  Xin Zhang,et al.  Intelligent Energy Management Algorithms for EV-charging Scheduling with Consideration of Multiple EV Charging Modes , 2019, Energies.

[25]  S. Lloyd Quantum approximate optimization is computationally universal , 2018, 1812.11075.

[26]  Leo Zhou,et al.  Quantum Approximate Optimization Algorithm: Performance, Mechanism, and Implementation on Near-Term Devices , 2018, Physical Review X.

[27]  P. Zoller,et al.  Self-verifying variational quantum simulation of lattice models , 2018, Nature.

[28]  Stuart Hadfield,et al.  On the Representation of Boolean and Real Functions as Hamiltonians for Quantum Computing , 2018, ACM Transactions on Quantum Computing.

[29]  John Preskill,et al.  Quantum Computing in the NISQ era and beyond , 2018, Quantum.

[30]  Rupak Biswas,et al.  From the Quantum Approximate Optimization Algorithm to a Quantum Alternating Operator Ansatz , 2017, Algorithms.

[31]  Kyungsik Lee,et al.  Optimal Scheduling for Electric Vehicle Charging under Variable Maximum Charging Power , 2017 .

[32]  E. Rieffel,et al.  Near-optimal quantum circuit for Grover's unstructured search using a transverse field , 2017, 1702.02577.

[33]  J. Christopher Beck,et al.  Mixed Integer Programming models for job shop scheduling: A computational analysis , 2016, Comput. Oper. Res..

[34]  Jorge Nocedal,et al.  Optimization Methods for Large-Scale Machine Learning , 2016, SIAM Rev..

[35]  A. Harrow,et al.  Quantum Supremacy through the Quantum Approximate Optimization Algorithm , 2016, 1602.07674.

[36]  D. Venturelli,et al.  Quantum Annealing Implementation of Job-Shop Scheduling , 2015 .

[37]  Yann LeCun,et al.  The Loss Surfaces of Multilayer Networks , 2014, AISTATS.

[38]  M. Heyl,et al.  Probing entanglement in adiabatic quantum optimization with trapped ions , 2014, Front. Phys..

[39]  Manfred Morari,et al.  A decomposition method for large scale MILPs, with performance guarantees and a power system application , 2014, Autom..

[40]  Augusto Smerzi,et al.  Fisher information and entanglement of non-Gaussian spin states , 2014, Science.

[41]  Kavita Dorai,et al.  Determining the parity of a permutation using an experimental NMR qutrit , 2014, 1406.5026.

[42]  Surya Ganguli,et al.  Identifying and attacking the saddle point problem in high-dimensional non-convex optimization , 2014, NIPS.

[43]  Andrew Lucas,et al.  Ising formulations of many NP problems , 2013, Front. Physics.

[44]  Daniel A. Lidar,et al.  Review of Decoherence‐Free Subspaces, Noiseless Subsystems, and Dynamical Decoupling , 2012, 1208.5791.

[45]  Carlos A. Coello Coello,et al.  Constraint-handling in nature-inspired numerical optimization: Past, present and future , 2011, Swarm Evol. Comput..

[46]  Alan Crispin,et al.  Graph Coloring with a Distributed Hybrid Quantum Annealing Algorithm , 2011, KES-AMSTA.

[47]  Alan Crispin,et al.  Quantum annealing of the graph coloring problem , 2011, Discret. Optim..

[48]  Richard E. Korf,et al.  Objective Functions for Multi-Way Number Partitioning , 2010, SOCS.

[49]  Der-San Chen,et al.  Applied Integer Programming: Modeling and Solution , 2010 .

[50]  Dániel Marx,et al.  RAPH COLORING PROBLEMS AND THEIR APPLICATIONS IN SCHEDULING , 2022 .

[51]  S. Mertens The Easiest Hard Problem: Number Partitioning , 2003, Computational Complexity and Statistical Physics.

[52]  S. Lloyd,et al.  Universal quantum control in irreducible state-space sectors: Application to bosonic and spin-boson systems , 2003, quant-ph/0308132.

[53]  Sheik Meeran,et al.  Deterministic job-shop scheduling: Past, present and future , 1999, Eur. J. Oper. Res..

[54]  E. Knill,et al.  Dynamical Decoupling of Open Quantum Systems , 1998, Physical Review Letters.

[55]  S. Lloyd,et al.  DYNAMICAL SUPPRESSION OF DECOHERENCE IN TWO-STATE QUANTUM SYSTEMS , 1998, quant-ph/9803057.

[56]  David Pisinger,et al.  A Minimal Algorithm for the Bounded Knapsack Problem , 1995, IPCO.

[57]  S. Meiboom,et al.  Modified Spin‐Echo Method for Measuring Nuclear Relaxation Times , 1958 .

[58]  E. Purcell,et al.  Effects of Diffusion on Free Precession in Nuclear Magnetic Resonance Experiments , 1954 .

[59]  T. Stollenwerk,et al.  Toward Quantum Gate-Model Heuristics for Real-World Planning Problems , 2020, IEEE Transactions on Quantum Engineering.

[60]  Marina Schmid,et al.  Optimization In Operations Research , 2016 .

[61]  E. Hahn,et al.  Spin Echoes , 2011 .

[62]  Nikolaus Hansen,et al.  The CMA Evolution Strategy: A Comparing Review , 2006, Towards a New Evolutionary Computation.

[63]  Zbigniew Michalewicz,et al.  A Survey of Constraint Handling Techniques in Evolutionary Computation Methods , 1995 .