A volume-preserving approach for modeling and animating water flows generated by metaballs

This paper presents a volume-preserving approach for animating liquid flows modeled by metaballs. A volume of liquid can be adjusted to a previous volume by using the influence radius and the maximum density of metaballs as volume-controlling parameters. Recursive subdivision is used to efficiently calculate the volume of implicit surfaces. The criterion for subdivision is obtained by using the concept of interval analysis and the common property of metaball density functions. Providing a sequence of parameters, the volume-compensation region can be controlled according to the substance making up the object, resulting in local preservation of the volume. Set partition is used for determining isolated surfaces in order to apply local-volume preservation.

[1]  Alain Fournier,et al.  A simple model of ocean waves , 1986, SIGGRAPH.

[2]  Darwyn R. Peachey,et al.  Modeling waves and surf , 1986, SIGGRAPH.

[3]  Gavin S. P. Miller,et al.  Rapid, stable fluid dynamics for computer graphics , 1990, SIGGRAPH.

[4]  Alla Sheffer,et al.  Volume-preserving free-form solids , 1995, IEEE Trans. Vis. Comput. Graph..

[5]  Tomoyuki Nishita,et al.  Method of displaying optical effects within water using accumulation buffer , 1994, SIGGRAPH.

[6]  Ming C. Lin,et al.  Fast volume-preserving free-form deformation using multi-level optimization , 2000, Comput. Aided Des..

[7]  Hwan-Gue Cho,et al.  A new water droplet model using metaball in the gravitational field , 1999, Comput. Graph..

[8]  Dimitris N. Metaxas,et al.  Realistic Animation of Liquids , 1996, Graphics Interface.

[9]  Dominique Bechmann,et al.  Volume-preserving space deformation , 1997, Comput. Graph..

[10]  Thomas W. Sederberg,et al.  Free-form deformation of solid geometric models , 1986, SIGGRAPH.

[11]  Mathieu Desbrun,et al.  Animating soft substances with implicit surfaces , 1995, SIGGRAPH.

[12]  Pierre Poulin,et al.  Simulating the Flow of Liquid Droplets , 1998, Graphics Interface.

[13]  Jessica K. Hodgins,et al.  Dynamic simulation of splashing fluids , 1995, Proceedings Computer Animation'95.

[14]  J. Stolfi,et al.  Aane Arithmetic and Its Applications to Computer Graphics , 1990 .

[15]  Shinya Ikeda,et al.  Animation of water droplets moving down a surface , 1999 .

[16]  Samir Akkouche,et al.  Incremental Polygonization of Implicit Surfaces , 2000, Graph. Model..

[17]  Golam Ashraf,et al.  Dust and water splashing models for hopping figures , 1999, Comput. Animat. Virtual Worlds.

[18]  John M. Snyder,et al.  Interval analysis for computer graphics , 1992, SIGGRAPH.

[19]  James E. Miller,et al.  Modelling And Rendering Liquids In Motion , 1999 .

[20]  James F. Blinn,et al.  A Generalization of Algebraic Surface Drawing , 1982, TOGS.