Magnetic spin imaging under ambient conditions with sub-cellular resolution.

The detection of small numbers of magnetic spins is a significant challenge in the life, physical and chemical sciences, especially when room temperature operation is required. Here we show that a proximal nitrogen-vacancy spin ensemble serves as a high precision sensing and imaging array. Monitoring its longitudinal relaxation enables sensing of freely diffusing, unperturbed magnetic ions and molecules in a microfluidic device without applying external magnetic fields. Multiplexed charge-coupled device acquisition and an optimized detection scheme permits direct spin noise imaging of magnetically labelled cellular structures under ambient conditions. Within 20 s we achieve spatial resolutions below 500 nm and experimental sensitivities down to 1,000 statistically polarized spins, of which only 32 ions contribute to a net magnetization. The results mark a major step towards versatile sub-cellular magnetic imaging and real-time spin sensing under physiological conditions providing a minimally invasive tool to monitor ion channels or haemoglobin trafficking inside live cells.

[1]  B. Chui,et al.  Single spin detection by magnetic resonance force microscopy , 2004, Nature.

[2]  D. Rickel,et al.  Spectroscopy of spontaneous spin noise as a probe of spin dynamics and magnetic resonance , 2004, Nature.

[3]  P. Westlund A generalized Solomon-Bloembergen-Morgan theory for arbitrary electron spin quantum number S , 1995 .

[4]  M. Markham,et al.  Ultralong spin coherence time in isotopically engineered diamond. , 2009, Nature materials.

[5]  Alex I. Braginski,et al.  The SQUID Handbook Vol II: Applications of SQUIDs and SQUID Systems , 2006 .

[6]  L. Hollenberg,et al.  Scanning quantum decoherence microscopy , 2008, Nanotechnology.

[7]  J. Wrachtrup,et al.  Scanning confocal optical microscopy and magnetic resonance on single defect centers , 1997 .

[8]  R. Scholten,et al.  Ambient nanoscale sensing with single spins using quantum decoherence , 2012, 1211.5749.

[9]  M. Lukin,et al.  A robust scanning diamond sensor for nanoscale imaging with single nitrogen-vacancy centres. , 2011, Nature nanotechnology.

[10]  Raymond G. Beausoleil,et al.  Diamonds with a high density of nitrogen-vacancy centers for magnetometry applications , 2009 .

[11]  L. Hollenberg,et al.  Sensing of fluctuating nanoscale magnetic fields using nitrogen-vacancy centers in diamond. , 2009, Physical review letters.

[12]  F. Caruso,et al.  Monitoring ion-channel function in real time through quantum decoherence , 2009, Proceedings of the National Academy of Sciences.

[13]  T. Taminiau,et al.  Detection and control of individual nuclear spins using a weakly coupled electron spin. , 2012, Physical review letters.

[14]  Elad Harel,et al.  Zooming In on Microscopic Flow by Remotely Detected MRI , 2010, Science.

[15]  D Budker,et al.  Temperature- and magnetic-field-dependent longitudinal spin relaxation in nitrogen-vacancy ensembles in diamond. , 2011, Physical review letters.

[16]  F. Jelezko,et al.  Dark states of single nitrogen-vacancy centers in diamond unraveled by single shot NMR. , 2010, Physical review letters.

[17]  R. Bryant,et al.  NUCLEAR- AND ELECTRON-SPIN RELAXATION RATES IN SYMMETRICAL IRON, MANGANESE, AND GADOLINIUM IONS , 1995 .

[18]  Jacob M. Taylor,et al.  Nanoscale magnetic sensing with an individual electronic spin in diamond , 2008, Nature.

[19]  Electron spin as a spectrometer of nuclear spin noise and other fluctuations , 2006, cond-mat/0610716.

[20]  Christian Eggeling,et al.  STED microscopy reveals crystal colour centres with nanometric resolution. , 2009 .

[21]  Fedor Jelezko,et al.  Sensing external spins with nitrogen-vacancy diamond , 2011 .

[22]  F. Dolde,et al.  High sensitivity magnetic imaging using an array of spins in diamond. , 2010, The Review of scientific instruments.

[23]  J. Freed,et al.  Pulsed three-dimensional electron spin resonance microscopy , 2004 .

[24]  L. Helm,et al.  Comparison of different methods for calculating the paramagnetic relaxation enhancement of nuclear spins as a function of the magnetic field. , 2008, The Journal of chemical physics.

[25]  Lukin,et al.  Magnetic field imaging with nitrogen-vacancy ensembles , 2011, 1207.3339.

[26]  G. Berman,et al.  Spin Microscope Based on Optically Detected Magnetic Resonance , 2004, quant-ph/0405143.

[27]  W. W. Hansen,et al.  Nuclear Induction , 2011 .

[28]  S. Bennett,et al.  Sensing distant nuclear spins with a single electron spin. , 2012, Physical review letters.

[29]  Xing Rong,et al.  Preserving electron spin coherence in solids by optimal dynamical decoupling , 2009, Nature.

[30]  J. Ziegler,et al.  stopping and range of ions in solids , 1985 .

[31]  Alexej Jerschow,et al.  Nuclear spin noise imaging. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[32]  Alex I. Braginski,et al.  Applications of SQUIDs and SQUID systems , 2006 .

[33]  R Hanson,et al.  Universal Dynamical Decoupling of a Single Solid-State Spin from a Spin Bath , 2010, Science.

[34]  D. Maclaurin,et al.  Quantum measurement and orientation tracking of fluorescent nanodiamonds inside living cells. , 2011, Nature nanotechnology.

[35]  Alex I. Braginski,et al.  The SQUID handbook , 2006 .

[36]  D. Rugar,et al.  Nanoscale magnetic resonance imaging , 2009, Proceedings of the National Academy of Sciences.

[37]  Ultrasensitive diamond magnetometry using optimal dynamic decoupling , 2010, 1003.3699.

[38]  D. J. Twitchen,et al.  Quantum register based on coupled electron spins in a room-temperature solid. , 2010 .

[39]  M. Gustafsson Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[40]  P. Westlund,et al.  Nuclear and electron spin relaxation in paramagnetic complexes in solution: effects of the quantum nature of molecular vibrations. , 2004, The Journal of chemical physics.

[41]  R. Xu,et al.  Theory of open quantum systems , 2002 .

[42]  W. Wong,et al.  Small molecular gadolinium(III) complexes as MRI contrast agents for diagnostic imaging , 2007 .

[43]  C. Degen Nanoscale magnetometry: Microscopy with single spins. , 2008, Nature nanotechnology.

[44]  I. Solomon Relaxation Processes in a System of Two Spins , 1955 .

[45]  D. Budker,et al.  Optical magnetometry - eScholarship , 2006, physics/0611246.

[46]  D. Budker,et al.  Relaxivity of gadolinium complexes detected by atomic magnetometry , 2011, Magnetic resonance in medicine.

[47]  W. Dröge Free radicals in the physiological control of cell function. , 2002, Physiological reviews.

[48]  J. D. Robertson,et al.  Copper, iron and zinc in Alzheimer's disease senile plaques , 1998, Journal of the Neurological Sciences.

[49]  J. Ziegler THE STOPPING AND RANGE OF IONS IN SOLIDS , 1988 .

[50]  Jacob M. Taylor,et al.  High-sensitivity diamond magnetometer with nanoscale resolution , 2008, 0805.1367.

[51]  Nan Zhao,et al.  Sensing single remote nuclear spins. , 2012, Nature nanotechnology.

[52]  R. Hanson,et al.  Decoherence dynamics of a single spin versus spin ensemble , 2008 .