Integrating complementarity into the 2D displacement discontinuity boundary element method to model faults and fractures with frictional contact properties

We present a two-dimensional displacement discontinuity method (DDM) in combination with a complementarity solver to simulate quasi-static slip on cracks as models for faults and fractures in an otherwise homogeneous, isotropic, linear elastic material. A complementarity algorithm enforces appropriate contact boundary conditions along the cracks so that variable friction and frictional strength can be included. This method accurately computes slip and opening distributions along the cracks, displacement and stress fields within the surrounding material, and stress intensity factors at the crack tips. The DDM with complementarity is a simple yet powerful tool to investigate many aspects of the mechanical behavior of faults and fractures in Earth's brittle crust. Implementation in Excel and Matlab enables easy saving, organization, and sharing.

[1]  Jon E. Olson,et al.  The initiation and growth of en échelon veins , 1991 .

[2]  David D. Pollard,et al.  Three-dimensional analyses of slip distributions on normal fault arrays with consequences for fault scaling , 1996 .

[3]  B. Lawn Fracture of Brittle Solids by Brian Lawn , 1993 .

[4]  David D. Pollard,et al.  On the patterns of wing cracks along an outcrop scale flaw: A numerical modeling approach using complementarity , 2008 .

[5]  Arunachalam Ravindran,et al.  Algorithm 431: A computer routine for quadratic and linear programming problems [H] , 1972 .

[6]  Patience A. Cowie,et al.  Physical explanation for the displacement-length relationship of faults using a post-yield fracture mechanics model , 1992 .

[7]  J. C. Jaeger The frictional properties of joints in rock , 1959 .

[8]  J. Ole Kaven,et al.  Linear complementarity formulation for 3D frictional sliding problems , 2012, Computational Geosciences.

[9]  S. L. Crouch,et al.  Boundary element methods in solid mechanics , 1983 .

[10]  David D. Pollard,et al.  Fundamentals of Structural Geology , 2005 .

[11]  Stephen J. Martel,et al.  Effects of cohesive zones on small faults and implications for secondary fracturing and fault trace geometry , 1997 .

[12]  J. Rice,et al.  The growth of slip surfaces in the progressive failure of over-consolidated clay , 1973, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[13]  J. C. Jaeger,et al.  A medium-scale direct friction experiment , 1968 .

[14]  J.-Cl. DeBremaecker,et al.  A comparison of two algorithms for solving closed crack problems , 2000 .

[15]  Christopher K.Y. Leung,et al.  A fast iterative boundary element method for solving closed crack problems , 1999 .

[16]  N. Muskhelishvili Some basic problems of the mathematical theory of elasticity , 1953 .

[17]  Yoshiaki Ida,et al.  Cohesive force across the tip of a longitudinal‐shear crack and Griffith's specific surface energy , 1972 .

[18]  Michele L. Cooke,et al.  Erratum: ``Fracture localization along faults with spatially varying friction'' , 1997 .

[19]  W. Griffith,et al.  Rough faults, distributed weakening, and off-fault deformation , 2009 .

[20]  Richard W. Cottle,et al.  Linear Complementarity Problem. , 1992 .

[21]  David D. Pollard,et al.  Slip distributions on intersecting normal faults , 1999 .

[22]  Paul L. Fackler,et al.  Applied Computational Economics and Finance , 2002 .

[23]  Jianlin Wang,et al.  An iterative algorithm for modeling crack closure and sliding , 2008 .

[24]  Masao Fukushima,et al.  A Combined Smoothing and Regularization Method for Monotone Second-Order Cone Complementarity Problems , 2005, SIAM J. Optim..

[25]  Michael C. Ferris,et al.  Including gravity in the Displacement Discontinuity Method when accounting for contact interaction , 2004 .

[26]  Atilla Aydin,et al.  Formation of interior basins associated with curved faults in Alaska , 1990 .

[27]  Patrick T. Harker,et al.  Finite-dimensional variational inequality and nonlinear complementarity problems: A survey of theory, algorithms and applications , 1990, Math. Program..

[28]  S. L. Crouch Solution of plane elasticity problems by the displacement discontinuity method. I. Infinite body solution , 1976 .

[29]  J. C. Jaeger,et al.  Fundamentals of rock mechanics , 1969 .

[30]  Geoffrey C. P. King,et al.  The morphology of strike‐slip faults: Examples from the San Andreas Fault, California , 1989 .

[31]  Michael C. Ferris,et al.  Feasible descent algorithms for mixed complementarity problems , 1999, Math. Program..

[32]  Friction of rocks , 1978 .

[33]  Richard H. Sibson,et al.  Fault rocks and fault mechanisms , 1977, Journal of the Geological Society.

[34]  James D. Byerlee,et al.  Frictional characteristics of granite under high confining pressure , 1967 .

[35]  D. S. Dugdale Yielding of steel sheets containing slits , 1960 .

[36]  S. Dirkse,et al.  The path solver: a nommonotone stabilization scheme for mixed complementarity problems , 1995 .

[37]  Michele L. Cooke,et al.  Solving 3D boundary element problems using constrained iterative approach , 2010 .

[38]  Phillip G Resor,et al.  Slip heterogeneity on a corrugated fault , 2009 .

[39]  Michael C. Ferris,et al.  Interfaces to PATH 3.0: Design, Implementation and Usage , 1999, Comput. Optim. Appl..

[40]  Richard A. Schultz,et al.  Stress intensity factors for curved cracks obtained with the displacement discontinuity method , 1988, International Journal of Fracture.

[41]  David G. Luenberger,et al.  Linear and nonlinear programming , 1984 .

[42]  David D. Pollard,et al.  Slip distributions on faults: effects of stress gradients, inelastic deformation, heterogeneous host-rock stiffness, and fault interaction , 1994 .

[43]  Katta G. Murty,et al.  Linear complementarity, linear and nonlinear programming , 1988 .

[44]  David D. Pollard,et al.  The geometry of echelon fractures in rock: implications from laboratory and numerical experiments , 1993 .

[45]  J. Arora,et al.  Review of formulations for elastostatic frictional contact problems , 2000 .

[46]  Jeffrey C. Trinkle,et al.  Complementarity formulations and existence of solutions of dynamic multi-rigid-body contact problems with coulomb friction , 1996, Math. Program..

[47]  John R. Lister,et al.  Calculation of dike trajectories from volcanic centers , 2002 .

[48]  G. I. Barenblatt THE MATHEMATICAL THEORY OF EQUILIBRIUM CRACKS IN BRITTLE FRACTURE , 1962 .

[49]  P. Pardalos,et al.  Handbook of global optimization , 1995 .

[50]  Elizabeth Ritz,et al.  Closure of circular arc cracks under general loading: effects on stress intensity factors , 2011 .