Seismic reflection along the path of the Mediterranean Undercurrent

Seismic reflection profiling is applied to the study of large scale physical oceanographic processes in the Gulf of C� adiz and western Iberian coast, coinciding with the path of the Mediterranean Undercurrent. The multi-channel seismic reflection method provides clear images of thermohaline fine structure with a horizontal resolution approximately two orders of magnitude higher than CTD casting. The seismic data are compared with co-located historical oceanographic data. Three seismic reflectivity zones are identified: North Atlantic Central Water, Mediterranean Water and North Atlantic Deep Water. Seismic evidence for the path of the Mediterranean Undercurrent is found in the near-slope reflectivity patterns, with rising reflectors between about 500 and 1500 m. However, the core of the undercurrent is largely transparent. Seismic images show that central and, particularly, intermediate Mediterranean Waters have fine structure coherent over horizontal distances of several tens of kilometers. However, the intensity of the reflectors, and their horizontal coherence, decreases downstream. This change in seismic reflectivity is probably the result of diminished vertical thermohaline contrasts between adjacent water masses, so that double-diffusion processes become unable to sustain temperature and salinity staircases. Comparison of root-mean-square seismic amplitudes with temperature and salinity differences between the Mediterranean Undercurrent and the overlying central waters suggests a causal relationship between observed thermohaline fine structure and true seismic amplitudes. We estimate that, within this intermediate water stratum, impedance contrasts are mainly controlled by sound speed contrasts (a factor between 3.5 and 10 times larger than density contrasts), which are mainly controlled by temperature contrasts (a factor between 1.5 and 5 times larger than salinity contrasts).

[1]  G. Batchelor,et al.  An Introduction to Fluid Dynamics , 1968 .

[2]  H. Niino,et al.  Simultaneous seismic reflection and physical oceanographic observations of oceanic fine structure in the Kuroshio extension front , 2006 .

[3]  M. Arhan,et al.  Circulation and mixing of Mediterranean water west of the Iberian Peninsula , 1994 .

[4]  G. Johnson,et al.  Mediterranean Outflow Mixing and Dynamics , 1993, Science.

[5]  R. Schmitt,et al.  Seismic reflection imaging of water mass boundaries in the Norwegian Sea , 2004 .

[6]  S. Thorpe,et al.  The Turbulent Ocean , 2005 .

[7]  L. Matias,et al.  Crustal thinning in the Southwestern Iberia Margin , 1996 .

[8]  Mrinal K. Sen,et al.  Full waveform inversion of reflection seismic data for ocean temperature profiles , 2008 .

[9]  D. Michon,et al.  Ondes internes profondes révélées par sismique réflexion au sein des masses d'eau en Atlantique-Est , 1988 .

[10]  Les Hatton,et al.  Seismic data processing: Theory and practice , 1986 .

[11]  L. Pinheiro,et al.  Water Column Seismic Images as Maps of Temperature Gradient , 2009 .

[12]  A. Bower,et al.  Structure of the Mediterranean Undercurrent and Mediterranean Water spreading around the southwestern Iberian Peninsula , 2002 .

[13]  Carl Wunsch,et al.  Ocean acoustic tomography: a scheme for large scale monitoring , 1979 .

[14]  W. Munk,et al.  Internal wave breaking and microstructure (The chicken and the egg) , 1973 .

[15]  J. Pelegrí,et al.  Mass fluxes in the Canary Basin , 2006 .

[16]  B. Ruddick,et al.  Oceanic thermohaline intrusions: theory , 2003 .

[17]  A. Bower,et al.  Some aspects of time variability of the Mediterranean Water off south Portugal , 1999 .

[18]  L. S. Laurent,et al.  The Contribution of Salt Fingers to Vertical Mixing in the North Atlantic Tracer Release Experiment , 1999 .

[19]  G. Cabeçadas,et al.  Physical, chemical and sedimentological aspects of the Mediterranean outflow off Iberia , 2002 .

[20]  P. Richardson,et al.  A census of Meddies tracked by floats , 2000 .

[21]  Philip L. Richardson,et al.  Two Years in the Life of a Mediterranean Salt Lens , 1989 .

[22]  J. Pelegrí,et al.  A mechanism for layer formation in stratified geophysical flows , 1998 .

[23]  I. F. Jones,et al.  SIGNAL‐TO‐NOISE RATIO ENHANCEMENT IN MULTICHANNEL SEISMIC DATA VIA THE KARHUNEN‐LOÉVE TRANSFORM* , 1987 .

[24]  Sven Treitel,et al.  The complex Wiener filter , 1974 .

[25]  M. Orr,et al.  Remote acoustic monitoring of natural suspensate distributions, active suspensate resuspension, and slope/shelf water intrusions , 1978 .

[26]  T. Noguchi,et al.  Two‐dimensional mapping of fine structures in the Kuroshio Current using seismic reflection data , 2005 .

[27]  B. Ruddick Intrusive Mixing in a Mediterranean Salt Lens—Intrusion Slopes and Dynamical Mechanisms , 1992 .

[28]  Raymond W. Schmitt,et al.  DOUBLE DIFFUSION IN OCEANOGRAPHY , 1994 .

[29]  W. Holbrook,et al.  Temperature contrasts in the water column inferred from amplitude‐versus‐offset analysis of acoustic reflections , 2005 .

[30]  A. Watson,et al.  Mixing of a tracer in the pycnocline , 1998 .

[31]  Nuno Serra,et al.  Eddy generation in the Mediterranean undercurrent , 2002 .

[32]  Michael Schröder,et al.  Tracking three meddies with SOFAR floats , 1989 .

[33]  N. Serra,et al.  Low‐frequency variability of the Mediterranean undercurrent downstream of Portimão Canyon , 2003 .

[34]  E. Chassignet,et al.  A regional modeling study of the entraining Mediterranean outflow , 2007 .

[35]  A. Gargett,et al.  Oceanic double-infusion: introduction , 2003 .

[36]  B. Ruddick Sounding Out Ocean Fine Structure , 2003, Science.

[37]  Frederick S. Sherman,et al.  Symposium on Naval Hydrodynamics , 1957 .

[38]  P. Wiebe,et al.  Acoustic scattering characteristics of several zooplankton groups , 1996 .

[39]  Juan José Dañobeitia,et al.  Imaging meddy finestructure using multichannel seismic reflection data , 2008 .

[40]  H. Óttersten,et al.  Atmospheric Structure and Radar Backscattering in Clear Air , 1969 .

[41]  Kurt M. Strack,et al.  Society of Exploration Geophysicists , 2007 .

[42]  W. Steven Holbrook,et al.  Ocean internal wave spectra inferred from seismic reflection transects , 2005 .

[43]  Jenö Gazdag,et al.  Wave equation migration with the phase-shift method , 1978 .

[44]  G. Johnson,et al.  Stress on the Mediterranean Outflow Plume: Part I. Velocity and Water Property Measurements , 1994 .

[45]  M. B. Widess HOW THIN IS A THIN BED , 1973 .

[46]  W. Steven Holbrook,et al.  Thermohaline Fine Structure in an Oceanographic Front from Seismic Reflection Profiling , 2003, Science.

[47]  N. Wells,et al.  Ocean circulation and climate , 2002 .

[48]  Amy S. Bower,et al.  Lagrangian Observations of Meddy Formation during A Mediterranean Undercurrent Seeding Experiment , 1997 .

[49]  J. Ochoa,et al.  Water mass exchange in the Gulf of Cadiz , 1991 .

[50]  Louis Goodman Acoustic scattering from ocean microstructure , 1990 .

[51]  P. Wiebe,et al.  Tidally generated high-frequency internal wave packets and their effects on plankton in Massachusetts Bay , 1983 .

[52]  M. Iorga,et al.  Signatures of the Mediterranean outflow from a North Atlantic climatology 1. Salinity and density fields , 1999 .

[53]  J. Phillips,et al.  Multichannel Acoustic Reflection Profiling of Ocean Watermass Temperature/Salinity Interfaces , 1991 .

[54]  S. Thorpe Ocean variability and acoustic propagation , 1992 .

[55]  Ali H. Sayed,et al.  Adaptive Filters , 2008 .