THE ABSOLUTE AGE OF THE GLOBULAR CLUSTER M15 USING NEAR-INFRARED ADAPTIVE OPTICS IMAGES FROM PISCES/LBT

We present deep near-infrared (NIR) J, Ks photometry of the old, metal-poor Galactic globular cluster M\,15 obtained with images collected with the LUCI1 and PISCES cameras available at the Large Binocular Telescope (LBT). We show how the use of First Light Adaptive Optics system coupled with the (FLAO) PISCES camera allows us to improve the limiting magnitude by ~2 mag in Ks. By analyzing archival HST data, we demonstrate that the quality of the LBT/PISCES color magnitude diagram is fully comparable with analogous space-based data. The smaller field of view is balanced by the shorter exposure time required to reach a similar photometric limit. We investigated the absolute age of M\,15 by means of two methods: i) by determining the age from the position of the main sequence turn-off; and ii) by the magnitude difference between the MSTO and the well-defined knee detected along the faint portion of the MS. We derive consistent values of the absolute age of M15, that is 12.9+-2.6 Gyr and 13.3+-1.1 Gyr, respectively.

[1]  A. Borysow,et al.  Collision-induced absorption coefficients of H2 pairs at temperatures from 60 K to 1000 K , 2002 .

[2]  D. Fantinel,et al.  Resolved Stellar Population of Distant Galaxies in the ELT Era , 2012, 1206.0909.

[3]  B. Madore,et al.  The Hubble Constant , 2010, 1004.1856.

[4]  S. Cassisi,et al.  A Large Stellar Evolution Database for Population Synthesis Studies. I. Scaled Solar Models and Isochrones , 2004, astro-ph/0405193.

[5]  J. Ferguson,et al.  A LARGE STELLAR EVOLUTION DATABASE FOR POPULATION SYNTHESIS STUDIES. V. STELLAR MODELS AND ISOCHRONES WITH CNONa ABUNDANCE ANTICORRELATIONS , 2009, 0903.0825.

[6]  S. Saracino,et al.  GEMINI/GeMS OBSERVATIONS UNVEIL THE STRUCTURE OF THE HEAVILY OBSCURED GLOBULAR CLUSTER LILLER 1. , 2015, 1505.00568.

[7]  S. Degl'Innocenti,et al.  The Pisa Stellar Evolution Data Base for low-mass stars , 2012, 1202.4864.

[8]  Stefano Casertano,et al.  A 3% SOLUTION: DETERMINATION OF THE HUBBLE CONSTANT WITH THE HUBBLE SPACE TELESCOPE AND WIDE FIELD CAMERA 3 , 2011, 1103.2976.

[9]  Paolo Ventura,et al.  Predictions for Self-Pollution in Globular Cluster Stars , 2001 .

[10]  F. Paresce,et al.  HERSCHEL FAR-IR OBSERVATIONS OF THE GIANT H ii REGION NGC 3603 , 2014, 1411.3094.

[11]  S. Cassisi,et al.  The Initial Mass Function of the Galactic Bulge down to ~0.15 M☉ , 1999, astro-ph/9906452.

[12]  Carnegie Observatories,et al.  ON THE DISTANCE OF THE GLOBULAR CLUSTER M4 (NGC 6121) USING RR LYRAE STARS. I. OPTICAL AND NEAR-INFRARED PERIOD–LUMINOSITY AND PERIOD–WESENHEIT RELATIONS , 2014, 1411.6826.

[13]  P. Stetson DAOPHOT: A COMPUTER PROGRAM FOR CROWDED-FIELD STELLAR PHOTOMETRY , 1987 .

[14]  Jean-Pierre Véran,et al.  Photometric performance of LGS MCAO with science-based metrics: first results from Gemini/GeMS observations of Galactic globular clusters , 2014, Astronomical Telescopes and Instrumentation.

[15]  G. Wallerstein The Chemical Composition of Stars in Globular Clusters: A Glimpse at the Contribution by Population III? , 1983 .

[16]  Giampaolo Piotto,et al.  THE ACS SURVEY OF GALACTIC GLOBULAR CLUSTERS. VII. RELATIVE AGES , 2008, 0812.4541.

[17]  A. Dotter,et al.  GLOBULAR CLUSTERS IN THE OUTER GALACTIC HALO: NEW HUBBLE SPACE TELESCOPE/ADVANCED CAMERA FOR SURVEYS IMAGING OF SIX GLOBULAR CLUSTERS AND THE GALACTIC GLOBULAR CLUSTER AGE–METALLICITY RELATION , 2011, 1106.4307.

[18]  R. V. D. Bosch,et al.  The Dynamical Mass-to-Light Ratio Profile and Distance of the Globular Cluster M15 , 2005, astro-ph/0512503.

[19]  G. Meylan,et al.  TWO ACCURATE TIME-DELAY DISTANCES FROM STRONG LENSING: IMPLICATIONS FOR COSMOLOGY , 2012, 1208.6010.

[20]  S. Cassisi,et al.  The Double Subgiant Branch of NGC 1851: The Role of the CNO Abundance , 2007, 0711.3823.

[21]  Wendy L. Freedman,et al.  CARNEGIE HUBBLE PROGRAM: A MID-INFRARED CALIBRATION OF THE HUBBLE CONSTANT , 2012, 1208.3281.

[22]  P. Marshall,et al.  DISSECTING THE GRAVITATIONAL LENS B1608+656. II. PRECISION MEASUREMENTS OF THE HUBBLE CONSTANT, SPATIAL CURVATURE, AND THE DARK ENERGY EQUATION OF STATE , 2009, 0910.2773.

[23]  D. Saumon,et al.  The Evolution of L and T Dwarfs in Color-Magnitude Diagrams , 2008, 0808.2611.

[24]  Armando Riccardi,et al.  The adaptive secondary mirror for the Large Binocular Telescope: optical acceptance test and preliminary on-sky commissioning results , 2010, Astronomical Telescopes + Instrumentation.

[25]  J.-M. Conan,et al.  An E-ELT case study: colour–magnitude diagrams of an old galaxy in the Virgo cluster , 2011, 1105.3455.

[26]  M. Schultheis,et al.  FIRST SPECTROSCOPIC IDENTIFICATION OF MASSIVE YOUNG STELLAR OBJECTS IN THE GALACTIC CENTER , 2009, 0907.4752.

[27]  Garching,et al.  Intrinsic iron spread and a new metallicity scale for globular clusters , 2009, 0910.0675.

[28]  R. Brast,et al.  MCAO near-IR photometry of the globular cluster NGC 6388: MAD observations in crowded fields , 2008, 0810.2248.

[29]  E. P. Lagioia,et al.  ON THE KINEMATIC SEPARATION OF FIELD AND CLUSTER STARS ACROSS THE BULGE GLOBULAR NGC 6528 , 2013, 1312.2272.

[30]  Edward J. Wollack,et al.  NINE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE (WMAP) OBSERVATIONS: COSMOLOGICAL PARAMETER RESULTS , 2012, 1212.5226.

[31]  J. Ferguson,et al.  ISOCHRONES FOR OLD (>5 GYR) STARS AND STELLAR POPULATIONS. I. MODELS FOR −2.4 ⩽ [Fe/H] ⩽+0.6, 0.25 ⩽ Y ⩽ 0.33, AND −0.4 ⩽ [α/Fe] ⩽+0.4 , 2014, 1409.1283.

[32]  Giampaolo Piotto,et al.  Metallicities on the Double Main Sequence of ω Centauri Imply Large Helium Enhancement , 2004, astro-ph/0412016.

[33]  Luca Casagrande,et al.  THE AGES OF 55 GLOBULAR CLUSTERS AS DETERMINED USING AN IMPROVED METHOD ALONG WITH COLOR–MAGNITUDE DIAGRAM CONSTRAINTS, AND THEIR IMPLICATIONS FOR BROADER ISSUES , 2013, 1308.2257.

[34]  Liverpool John Moores University,et al.  Stellar models with mixing length and T(tau) relations calibrated on 3D convection simulations , 2015, 1503.04582.

[35]  Laura Greggio,et al.  Studying the metallicity gradient in Virgo ellipticals with European-Extremely Large Telescope photometry of resolved stars , 2013, 1311.1003.

[36]  S. Cassisi,et al.  The M 4 Core Project with HST - II. Multiple stellar populations at the bottom of the main sequence , 2014, 1401.1091.

[37]  Ata Sarajedini,et al.  The ACS Survey of Galactic Globular Clusters. I. Overview and Clusters without Previous Hubble Space Telescope Photometry , 2006, astro-ph/0612598.

[38]  Darko Jevremovic,et al.  The Dartmouth Stellar Evolution Database , 2008, 0804.4473.

[39]  Peter B. Stetson,et al.  THE CENTER OF THE CORE-CUSP GLOBULAR CLUSTER M15: CFHT AND HST OBSERVATIONS, ALLFRAME REDUCTIONS , 1994 .

[40]  M. Phillips,et al.  Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant , 1998, astro-ph/9805201.

[41]  K. Gebhardt,et al.  The Dynamical M/l-profile and Distance of the Globular Cluster M15 , 2005 .

[42]  William E. Harris,et al.  A Catalog of Parameters for Globular Clusters in the Milky Way , 1996 .

[43]  S. Cassisi,et al.  Updated Electron-Conduction Opacities: The Impact on Low-Mass Stellar Models , 2007 .

[44]  L. Verde,et al.  Calibrating the cosmic distance scale ladder: the role of the sound horizon scale and the local expansion rate as distance anchors , 2014, 1411.1094.

[45]  M. Bellazzini,et al.  The cluster Terzan 5 as a remnant of a primordial building block of the Galactic bulge , 2009, Nature.

[46]  J. Mathis,et al.  The relationship between infrared, optical, and ultraviolet extinction , 1989 .

[47]  C. A. Oxborrow,et al.  Planck 2013 results. XVI. Cosmological parameters , 2013, 1303.5076.

[48]  W. Harris,et al.  A color-magnitude study of the globular cluster M15 , 1993 .

[49]  Roberto Ragazzoni,et al.  MAD the ESO multi-conjugate adaptive optics demonstrator , 2003, SPIE Astronomical Telescopes + Instrumentation.

[50]  S. Cassisi,et al.  A triple main sequence in the globular cluster NGC 2808 , 2007 .

[51]  V. Smith,et al.  Carbon isotopic abundances in giant stars in the CN-bimodal globular clusters NGC 6752 and M4 , 1991 .

[52]  S. Lucatello,et al.  The Na-O anticorrelation in horizontal branch stars. II. NGC1851 , 2012, 1201.1772.

[53]  R. Carrera,et al.  The SUMO project: a SUrvey of Multiple pOpulations in globular clusters , 2013, 1303.5187.

[54]  Sarah J. Diggs,et al.  Gemini multiconjugate adaptive optics system review – II. Commissioning, operation and overall performance , 2014, 1402.6906.

[55]  Ž. Ivezić,et al.  ACCEPTED FOR PUBLICATION IN APJ Preprint typeset using LATEX style emulateapj v. 10/09/06 GALACTIC GLOBULAR AND OPEN CLUSTERS IN THE SLOAN DIGITAL SKY SURVEY. II. TEST OF THEORETICAL STELLAR ISOCHRONES , 2022 .

[56]  R. Nichol,et al.  Detection of the Baryon Acoustic Peak in the Large-Scale Correlation Function of SDSS Luminous Red Galaxies , 2005, astro-ph/0501171.

[57]  Jessica R. Lu,et al.  Astrometric performance of the Gemini multiconjugate adaptive optics system in crowded fields , 2014, 1409.0719.

[58]  Judith G. Cohen Abundances in globular cluster red giants. II. M92 and M15. , 1978 .

[59]  L. Busoni,et al.  Natural guide star adaptive optics systems at LBT: FLAO commissioning and science operations status , 2012, Other Conferences.

[60]  University of British Columbia,et al.  THE 1% CONCORDANCE HUBBLE CONSTANT , 2014, 1406.1718.

[61]  Tod R. Lauer,et al.  RR LYRAE VARIABLES IN TWO FIELDS IN THE SPHEROID OF M31 , 2009, 0904.4290.

[62]  A. Sandage,et al.  The Oosterhoff period groups and the age of globular clusters. I. Photometry of cluster variables in M 15. , 1981 .

[63]  Oliver LeFevre,et al.  Commissioning and performances of the VLT-VIMOS , 2003, SPIE Astronomical Telescopes + Instrumentation.

[64]  M. Dall'Ora,et al.  Optical and Near-Infrared UBVRIJHK Photometry for the RR Lyrae Stars in the Nearby Globular Cluster M4 (NGC 6121) , 2014, 1406.7531.

[65]  E. Marchetti,et al.  ON A NEW NEAR-INFRARED METHOD TO ESTIMATE THE ABSOLUTE AGES OF STAR CLUSTERS: NGC 3201 AS A FIRST TEST CASE , 2009, 0912.0824.

[66]  Garching,et al.  Homogeneous age dating of 55 Galactic globular clusters. Clues to the Galaxy formation mechanisms , 2002, astro-ph/0204410.

[67]  Luca Casagrande,et al.  Synthetic stellar photometry – I. General considerations and new transformations for broad-band systems , 2014, 1407.6095.

[68]  G. Piotto,et al.  The ACS Survey of Galactic Globular Clusters. III. The Double Subgiant Branch of NGC 1851 , 2007, 0709.3762.

[69]  D. Schlegel,et al.  Maps of Dust Infrared Emission for Use in Estimation of Reddening and Cosmic Microwave Background Radiation Foregrounds , 1998 .

[70]  Roberto Buonanno,et al.  STELLAR PHOTOMETRY WITH BIG PIXELS , 1989 .

[71]  Douglas P. Finkbeiner,et al.  MEASURING REDDENING WITH SLOAN DIGITAL SKY SURVEY STELLAR SPECTRA AND RECALIBRATING SFD , 2010, 1012.4804.

[72]  I. Ivans,et al.  A Globular Cluster Metallicity Scale Based on the Abundance of Feii , 2002, astro-ph/0305380.

[73]  Johnson,et al.  Neutron-Capture Element Abundances in the Globular Cluster M15 , 2000, The Astrophysical journal.

[74]  A. Weiss,et al.  Globular Cluster Archaeology: Hydrogen-burning Nucleosynthesis and Extra Mixing in Extinct Stars , 2004 .

[75]  U. Jørgensen,et al.  High-temperature (1000–7000 K) collision-induced absorption of H2 pairs computed from the first principles, with application to cool and dense stellar atmospheres , 2001 .

[76]  Chile,et al.  THE HUBBLE SPACE TELESCOPE UV LEGACY SURVEY OF GALACTIC GLOBULAR CLUSTERS. I. OVERVIEW OF THE PROJECT AND DETECTION OF MULTIPLE STELLAR POPULATIONS , 2014, 1410.4564.

[77]  R. S. de Jong,et al.  PISCES: A Wide‐Field, 1–2.5 μm Camera for Large‐Aperture Telescopes , 2001 .

[78]  R. P. Kraft ABUNDANCE DIFFERENCES AMONG GLOBULAR CLUSTER GIANTS: PRIMORDIAL VS. EVOLUTIONARY SCENARIOS , 1994 .

[79]  S. Cassisi,et al.  THE INFRARED EYE OF THE WIDE-FIELD CAMERA 3 ON THE HUBBLE SPACE TELESCOPE REVEALS MULTIPLE MAIN SEQUENCES OF VERY LOW MASS STARS IN NGC 2808 , 2012, 1206.5529.

[80]  A. Dotter,et al.  DEEP 2MASS PHOTOMETRY OF M67 AND CALIBRATION OF THE MAIN-SEQUENCE J − KS COLOR DIFFERENCE AS AN AGE INDICATOR , 2009, 0904.2907.

[81]  G. Efstathiou H 0 revisited , 2013, 1311.3461.

[82]  E. Bernard,et al.  THE ACS LCID PROJECT. III. THE STAR FORMATION HISTORY OF THE CETUS dSph GALAXY: A POST-REIONIZATION FOSSIL , 2010, 1002.4300.

[83]  A. Marín-Franch,et al.  The ACS survey of Galactic globular clusters , 2012 .

[84]  Charles P. Cavedoni,et al.  Gemini multiconjugate adaptive optics system review - I. Design, trade-offs and integration , 2013, 1310.6199.

[85]  E. Diolaiti,et al.  MAD about the Large Magellanic Cloud - Preparing for the era of Extremely Large Telescopes , 2011, 1109.0161.

[86]  T. Harrison,et al.  The Dynamical Distance to M15: Estimates of the Cluster’s Age and Mass and of the Absolute Magnitude of Its RR Lyrae Stars , 2004 .

[87]  S. Cassisi,et al.  ω Centauri: The Population Puzzle Goes Deeper , 2004, astro-ph/0403112.

[88]  Galactic Globular Cluster Relative Ages , 1999, astro-ph/0503594.