Progress in modeling of fluid flows in crystal growth processes

[1]  Y. Kangawa,et al.  Global analysis of GaN growth using a solution technique , 2008 .

[2]  H. Tezuka,et al.  Optimization of the design of a crucible for a SiC sublimation growth system using a global model , 2008 .

[3]  A. Ebadian,et al.  Numerical Study on Flow Field and Temperature Distribution in Growth Process of 200 mm Czochralski Silicon Crystals , 2007 .

[4]  L. Peng,et al.  Three-dimensional thermocapillary–buoyancy flow of silicone oil in a differentially heated annular pool , 2007 .

[5]  K. Kakimoto,et al.  Investigation of oxygen distribution in electromagnetic CZ–Si melts with a transverse magnetic field using 3D global modeling , 2007 .

[6]  J. Yana,et al.  Application of flow-kinetics model to the PVT growth of SiC crystals , 2007 .

[7]  S. Nakamura,et al.  Ammonothermal Growth of GaN on an over-1-inch Seed Crystal , 2005 .

[8]  K. Kakimoto,et al.  Partly three-dimensional global modeling of a silicon Czochralski furnace. II. Model application : Analysis of a silicon Czochralski furnace in a transverse magnetic field , 2005 .

[9]  K. Kakimoto,et al.  Partly three-dimensional global modeling of a silicon Czochralski furnace. I. Principles, formulation and implementation of the model , 2005 .

[10]  K. Kakimoto,et al.  An analysis of temperature distribution near the melt–crystal interface in silicon Czochralski growth with a transverse magnetic field , 2005 .

[11]  V. Prasad,et al.  Effects of Baffle Design on Fluid Flow and Heat Transfer in Ammonothermal Growth of Nitrides , 2004 .

[12]  Chung-Wen Lan,et al.  Recent progress of crystal growth modeling and growth control , 2004 .

[13]  Paul Canfield,et al.  Design, Discovery and Growth of Novel Materials For Basic Research: An Urgent U.S. Need Report on the DOE/BES Workshop: “Future Directions of Design, Discovery and Growth of Single Crystals for Basic Research” , 2003 .

[14]  V. Prasad,et al.  Modeling of Ammonothermal Growth of Nitrides , 2003 .

[15]  J. Friedrich,et al.  Numerical modeling of crystal growth and solidification experiments carried out under microgravity conditions , 2003 .

[16]  M. Dudley,et al.  Silicon Carbide Crystals — Part II: Process Physics and Modeling , 2003 .

[17]  G. Müller,et al.  3D numerical simulation and experimental investigations of melt flow in an Si Czochralski melt under the influence of a cusp-magnetic field , 2002 .

[18]  Vishwanath Prasad,et al.  Modeling of Heat Transfer and Kinetics of Physical Vapor Transport Growth of Silicon Carbide Crystals , 2001 .

[19]  Vishwanath Prasad,et al.  Heat transfer and kinetics of bulk growth of silicon carbide , 2001 .

[20]  Vishwanath Prasad,et al.  A process model for silicon carbide growth by physical vapor transport , 2001 .

[21]  Vishwanath Prasad,et al.  Modeling of transport processes and kinetics of silicon carbide bulk growth , 2001 .

[22]  Vishwanath Prasad,et al.  Kinetics and modeling of sublimation growth of silicon carbide bulk crystal , 2001 .

[23]  Aleksey Lipchin,et al.  Hybrid finite-volume/finite-element simulation of heat transfer and melt turbulence in Czochralski crystal growth of silicon , 2000 .

[24]  Vishwanath Prasad,et al.  Modeling of silicon carbide crystal growth by physical vapor transport method , 2000 .

[25]  C. Carter,et al.  The status of SiC bulk growth from an industrial point of view , 2000 .

[26]  Y. Makarov,et al.  Analysis of sublimation growth of bulk SiC crystals in tantalum container , 2000 .

[27]  Franz Durst,et al.  Global numerical simulation of heat and mass transfer for SiC bulk crystal growth by PVT , 2000 .

[28]  Vishwanath Prasad,et al.  Modeling of Fluid Flow and Heat Transfer in a Hydrothermal Crystal Growth System: Use of , 1999 .

[29]  Robert A. Brown,et al.  Comparison of three turbulence models for simulation of melt convection in Czochralski crystal growth of silicon , 1999 .

[30]  E. Janzén,et al.  A practical model for estimating the growth rate in sublimation growth of SiC , 1999 .

[31]  G. Müller,et al.  Study of oxygen transport in Czochralski growth of silicon , 1999 .

[32]  Vishwanath Prasad,et al.  A porous media-based transport model for hydrothermal growth , 1999 .

[33]  Vishwanath Prasad,et al.  Turbulent transport of oxygen in the Czochralski growth of large silicon crystals , 1999 .

[34]  Vishwanath Prasad,et al.  Diameter-Controlled Czochralski Growth of Silicon Crystals , 1998 .

[35]  Mohammad H. Naraghi,et al.  NUMERICAL MODEL FOR RADIATIVE HEAT TRANSFER ANALYSIS IN ARBITRARILY SHAPED AXISYMMETRIC ENCLOSURES WITH GASEOUS MEDIA , 1998 .

[36]  A. Wysmołek,et al.  AMMONO method of BN, AlN and GaN synthesis and crystal growth. , 1998 .

[37]  R. Eckstein,et al.  Modelling of the PVT-SiC Bulk Growth Process Taking into Account Global Heat Transfer, Mass Transport and Heat of Crystallization and Results on its Experimental Verification , 1997 .

[38]  E. Janzén,et al.  A Coupled Finite Element Model for the Sublimation Growth of SiC , 1997 .

[39]  Y. Makarov,et al.  Modeling Analysis of Temperature Field and Species Transport Inside the System for Sublimation Growth of SiC in Tantalum Container , 1997 .

[40]  François Dupret,et al.  Time-dependent simulation of the growth of large silicon crystals by the Czochralski technique using a turbulent model for melt convection , 1997 .

[41]  Y. Makarov,et al.  SiC-bulk growth by physical-vapor transport and its global modelling , 1997 .

[42]  M. Pons,et al.  Different macroscopic approaches to the modelling of the sublimation growth of Sic single crystals , 1997 .

[43]  M. Pons,et al.  Thermodynamic Heat Transfer and Mass Transport Modeling of the Sublimation Growth of Silicon Carbide Crystals , 1996 .

[44]  G. Müller,et al.  Oxygen distribution in Czochralski silicon melts measured by an electrochemical oxygen sensor , 1996 .

[45]  F. TangermanDepartment A PARALLEL ALGORITHM FOR MULTIZONE, MULTIPHASE SYSTEMS WITH APPLICATION TO CRYSTAL GROWTH , 1996 .

[46]  Vishwanath Prasad,et al.  A multizone adaptive process model for low and high pressure crystal growth , 1995 .

[47]  V. Prasad,et al.  Role of crucible partition in improving Czochralski melt conditions , 1995 .

[48]  F. Durst,et al.  On the sublimation growth of SiC bulk crystals: development of a numerical process model , 1995 .

[49]  Michael Gevelber,et al.  Dynamics and control of the Czochralski process IV. Control structure design for interface shape control and performance evaluation , 1994 .

[50]  T. A. Kinney,et al.  Application of turbulence modeling to the integrated hydrodynamic thermal-capillary model of Czochralski crystal growth of silicon , 1993 .

[51]  M. Crochet,et al.  Numerical simulation of molten silicon flow; comparison with experiment , 1991 .

[52]  D. E. Bornside,et al.  Finite element/Newton method for the analysis of Czochralski crystal growth with diffuse‐grey radiative heat transfer , 1990 .

[53]  K. Kakimoto,et al.  Flow instability of molten silicon in the Czochralski configuration , 1990 .

[54]  D. E. Bornside,et al.  Toward an integrated analysis of czochralski growth , 1989 .

[55]  J. Derby,et al.  Thermal-capillary analysis of Czochralski and liquid encapsulated Czochralski crystal growth. II - Processing strategies , 1986 .

[56]  Jeffrey J. Derby,et al.  Thermal-capillary analysis of Czochralski and liquid encapsulated Czochralski crystal growth: I. Simulation , 1986 .

[57]  V. Tsvetkov,et al.  Investigation of growth processes of ingots of silicon carbide single crystals , 1978 .

[58]  P. Råback Modeling of the Sublimation Growth of Silicon Carbide Crystals , 2022 .