Stable Operation of AlGaN/GaN HEMTs for 25 h at 400°C in air

Extreme environments such as the Venus atmosphere are among the emerging applications that demand electronics that can withstand high-temperature oxidizing conditions. While wide-bandgap technologies for integrated electronics have been developed so far, they either suffer from gate oxide and threshold voltage (<inline-formula> <tex-math notation="LaTeX">$V_{th}$ </tex-math></inline-formula>) degradation over temperature, large power supply requirements, or intrinsic base current. In this letter, AlGaN/GaN high electron mobility transistors (HEMTs) are suggested as an alternative platform for integrated sensors and analog circuits in extreme environments in oxidizing air atmosphere over a wide temperature range from 22°C to 400°C. An optimal biasing region, with a peak of transconductance (<inline-formula> <tex-math notation="LaTeX">$g_{m,peak}$ </tex-math></inline-formula>) at −2.3 V with a negligible shift over the temperature range was observed. Moreover, remarkably low <inline-formula> <tex-math notation="LaTeX">$V_{th}$ </tex-math></inline-formula> variation of 0.9% was observed, enabling the design of analog circuits that can operate over the entire temperature range. Finally, the operation of the devices at 400°C and 500°C over 25 hours was experimentally studied, demonstrating the stability of the DC characteristics after the 5 hours of burn-in, at 400°C.

[1]  Daniel Donoval,et al.  High-temperature performance of AlGaN/GaN HFETs and MOSHFETs , 2008, Microelectron. Reliab..

[2]  P. Neudeck,et al.  Year-long 500°C Operational Demonstration of Up-scaled 4H-SiC JFET Integrated Circuits , 2018, Journal of Microelectronics and Electronic Packaging.

[3]  A. M. Francis,et al.  A CMOS SiC Linear Voltage Regulator for High Temperature Applications , 2016 .

[4]  Hongyun So,et al.  DC characteristics of ALD-grown Al2O3/AlGaN/GaN MIS-HEMTs and HEMTs at 600 °C in air , 2016 .

[5]  Hideki Hasegawa,et al.  Suppression of current collapse in insulated gate AlGaN/GaN heterostructure field-effect transistors using ultrathin Al2O3 dielectric , 2003 .

[6]  Naoki Kobayashi,et al.  High-temperature electron transport properties in AlGaN/GaN heterostructures , 2001 .

[7]  Alex Lidow,et al.  GaN-on-Si Power Technology: Devices and Applications , 2017, IEEE Transactions on Electron Devices.

[8]  Nicolas Grandjean,et al.  GaN-on-insulator technology for high-temperature electronics beyond 400 °C , 2013 .

[9]  Alan Mantooth,et al.  A wide bandgap silicon carbide (SiC) gate driver for high-temperature and high-voltage applications , 2014, 2014 IEEE 26th International Symposium on Power Semiconductor Devices & IC's (ISPSD).

[10]  C. Zetterling,et al.  A 600 °C TTL-Based 11-Stage Ring Oscillator in Bipolar Silicon Carbide Technology , 2018, IEEE Electron Device Letters.

[11]  K. J. Chen,et al.  Integrated gate-protected HEMTs and mixed-signal functional blocks for GaN smart power ICs , 2012, 2012 International Electron Devices Meeting.

[12]  L. Lanni,et al.  Bipolar integrated circuits in SiC for extreme environment operation , 2017 .

[13]  Christian Dua,et al.  Testing the Temperature Limits of GaN-Based HEMT Devices , 2010, IEEE Transactions on Device and Materials Reliability.

[14]  L. Lanni,et al.  500 °C Bipolar SiC Linear Voltage Regulator , 2015, IEEE Transactions on Electron Devices.

[15]  L. Lanni,et al.  A study on positive-feedback configuration of a bipolar SiC high temperature operational amplifier , 2016 .

[16]  P. Neudeck,et al.  High-temperature electronics - a role for wide bandgap semiconductors? , 2002, Proc. IEEE.

[17]  Javier A. Valle-Mayorga,et al.  A SiC NMOS Linear Voltage Regulator for High-Temperature Applications , 2014, IEEE Transactions on Power Electronics.

[18]  K. Ng,et al.  The Physics of Semiconductor Devices , 2019, Springer Proceedings in Physics.

[19]  Ateeq J. Suria,et al.  Degradation of 2DEG transport properties in GaN-capped AlGaN/GaN heterostructures at 600 °C in oxidizing and inert environments , 2017 .

[20]  Glenn M. Beheim,et al.  Prolonged 500 °C Demonstration of 4H-SiC JFET ICs With Two-Level Interconnect , 2016, IEEE Electron Device Letters.

[21]  F. Husna,et al.  High-Temperature Performance of AlGaN/GaN MOSHEMT With $\hbox{SiO}_{2}$ Gate Insulator Fabricated on Si (111) Substrate , 2012, IEEE Transactions on Electron Devices.

[22]  M. Micovic,et al.  Reliability Characteristics and Mechanisms of HRL’s T3 GaN Technology , 2017, IEEE Transactions on Semiconductor Manufacturing.

[23]  S. Delage,et al.  InAlN/GaN HEMTs for Operation in the 1000 $^{\circ} \hbox{C}$ Regime: A First Experiment , 2012, IEEE Electron Device Letters.

[24]  C. Zetterling,et al.  500 $^\circ$C SiC PWM Integrated Circuit , 2019, IEEE Transactions on Power Electronics.

[25]  Carl-Mikael Zetterling,et al.  500$^{\circ}{\rm C}$ Bipolar Integrated OR/NOR Gate in 4H-SiC , 2013, IEEE Electron Device Letters.

[26]  Peter A. Houston,et al.  High temperature performance of AlGaN/GaN HEMTs on Si substrates , 2006 .

[27]  C. Zetterling,et al.  500 °C High Current 4H-SiC Lateral BJTs for High-Temperature Integrated Circuits , 2017, IEEE Electron Device Letters.

[28]  Muhammad Waqar Hussain,et al.  A 500 °C Active Down-Conversion Mixer in Silicon Carbide Bipolar Technology , 2018, IEEE Electron Device Letters.

[29]  Carl-Mikael Zetterling,et al.  Design and Characterization of 500 °C Schmitt Trigger in 4H-SiC , 2015 .

[30]  T. Palacios,et al.  Estimation of Trap Density in AlGaN/GaN HEMTs from Subthreshold Slope Study , 2007, 2007 65th Annual Device Research Conference.

[31]  Minghua Zhu,et al.  Monolithic integration of GaN-based NMOS digital logic gate circuits with E-mode power GaN MOSHEMTs , 2018, 2018 IEEE 30th International Symposium on Power Semiconductor Devices and ICs (ISPSD).

[32]  M. Islam,et al.  Ultrawide‐Bandgap Semiconductors: Research Opportunities and Challenges , 2017 .

[33]  A. M. Francis,et al.  An integrated SiC CMOS gate driver , 2016, 2016 IEEE Applied Power Electronics Conference and Exposition (APEC).

[34]  Tom Tsai,et al.  Digital Integrated Circuits on an E-Mode GaN Power HEMT Platform , 2017, IEEE Electron Device Letters.

[35]  L. Lanni,et al.  A monolithic SiC drive circuit for SiC Power BJTs , 2015, 2015 IEEE 27th International Symposium on Power Semiconductor Devices & IC's (ISPSD).

[36]  R. Zhang,et al.  Temperature-dependent strain relaxation of the AlGaN barrier in AlGaN∕GaN heterostructures with and without Si3N4 surface passivation , 2006 .

[37]  Juin J. Liou,et al.  A review of recent MOSFET threshold voltage extraction methods , 2002, Microelectron. Reliab..

[38]  Debbie G. Senesky,et al.  Strain- and temperature-induced effects in AlGaN/GaN high electron mobility transistors , 2016 .

[39]  H. Mantooth,et al.  A SiC CMOS Linear Voltage Regulator for High-Temperature Applications , 2014, IEEE Transactions on Power Electronics.

[40]  C. Zetterling,et al.  500 °C, High Current Linear Voltage Regulator in 4H-SiC BJT Technology , 2018, IEEE Electron Device Letters.