The Gaia-ESO Survey: radial distribution of abundances in the Galactic disc from open clusters and young-field stars

Context. The spatial distribution of elemental abundances in the disc of our Galaxy gives insights both on its assembly process and subsequent evolution, and on the stellar nucleogenesis of the different elements. Gradients can be traced using several types of objects as, for instance, (young and old) stars, open clusters, HII regions, planetary nebulae. Aims. We aim to trace the radial distributions of abundances of elements produced through different nucleosynthetic channels - the α-elements O, Mg, Si, Ca and Ti, and the iron-peak elements Fe, Cr, Ni and Sc - by use of the Gaia-ESO IDR4 results for open clusters and young-field stars. Methods. From the UVES spectra of member stars, we have determined the average composition of clusters with ages > 0.1 Gyr. We derived statistical ages and distances of field stars. We traced the abundance gradients using the cluster and field populations and compared them with a chemo-dynamical Galactic evolutionary model. Results. The adopted chemo-dynamical model, with the new generation of metallicity-dependent stellar yields for massive stars, is able to reproduce the observed spatial distributions of abundance ratios, in particular the abundance ratios of [O/Fe] and [Mg/Fe] in the inner disc (5 kpc <RGC< 7 kpc), with their differences, that were usually poorly explained by chemical evolution models. Conclusions. Oxygen and magnesium are often considered to be equivalent in tracing α-element abundances and in deducing, for example, the formation timescales of different Galactic stellar populations. In addition, often [α/Fe] is computed combining several α-elements. Our results indicate, as expected, a complex and diverse nucleosynthesis of the various α-elements, in particular in the high metallicity regimes, pointing towards a different origin of these elements and highlighting the risk of considering them as a single class with common features. (Less)

[1]  A. Klutsch,et al.  The Gaia-ESO Survey: The present-day radial metallicity distribution of the Galactic disc probed by pre-main-sequence clusters , 2017, 1702.03461.

[2]  Sergey E. Koposov,et al.  The Gaia -ESO survey: The inner disk intermediate-age open cluster NGC 6802 , 2017, 1702.01109.

[3]  G. Carraro,et al.  The Gaia-ESO Survey: the inner disk, intermediate-age open cluster Trumpler 23 , 2016, 1611.00859.

[4]  E. Pancino,et al.  The gaia -ESO survey : Calibration strategy , 2016, 1610.06480.

[5]  D. O. Astronomy,et al.  The evolution of the Milky Way: New insights from open clusters , 2016, 1609.02619.

[6]  F. Baudin,et al.  Red giants observed by CoRoT and APOGEE: The evolution of the Milky Way's radial metallicity gradient , 2016, 1608.04951.

[7]  M. Asplund,et al.  The chemical compositions of solar twins in the open cluster M67 , 2016, 1608.03788.

[8]  M. Davies,et al.  Gravitational scattering of stars and clusters and the heating of the Galactic disk , 2016, 1605.02965.

[9]  Sergey E. Koposov,et al.  The Gaia-ESO Survey : the selection function of the Milky Way field stars , 2016, 1605.00515.

[10]  A. Jorissen,et al.  Cannibals in the thick disk: the young α-rich stars as evolved blue stragglers , 2016, 1603.08992.

[11]  S. Martell,et al.  GRACES observations of young [α/Fe]-rich stars , 2016, 1603.07034.

[12]  A. Bragaglia,et al.  Abundances and kinematics for ten anticentre open clusters , 2016, 1602.07121.

[13]  C. Prieto,et al.  Chemical abundance gradients from open clusters in the Milky Way disk: Results from the APOGEE survey , 2016, 1601.03099.

[14]  David Bersier,et al.  Bolometric light curves and explosion parameters of 38 stripped-envelope core-collapse supernovae , 2014, 1406.3667.

[15]  C. Soubiran,et al.  On the metallicity of open clusters. III. Homogenised sample , 2015, 1511.08884.

[16]  V. D’Orazi,et al.  Photometric and spectroscopic study of the intermediate-age open cluster ngc 2355* , 2015, 1508.05100.

[17]  Tucson,et al.  The photospheric solar oxygen project: IV. 3D-NLTE investigation of the 777 nm triplet lines , 2015, 1508.03487.

[18]  D. A. García-Hernández,et al.  Young α-enriched giant stars in the solar neighbourhood , 2015 .

[19]  Sergey E. Koposov,et al.  The Gaia-ESO Survey: characterisation of the [α/Fe] sequences in the Milky Way discs , 2015, 1507.08066.

[20]  G. Carraro,et al.  The Gaia-ESO Survey: Insights into the inner-disc evolution from open clusters , 2015, 1505.04039.

[21]  M. Asplund,et al.  Atomic and molecular data for optical stellar spectroscopy , 2015, 1506.06697.

[22]  C. Prieto,et al.  Young [α/Fe]-enhanced stars discovered by CoRoT and APOGEE: What is their origin? , 2015, 1503.06990.

[23]  I. Saviane,et al.  Oxygen, α-element and iron abundance distributions in the inner part of the Galactic thin disc , 2015, 1503.05898.

[24]  C. D. Laney,et al.  On the α-element gradients of the Galactic thin disk using Cepheids , 2015, 1503.03758.

[25]  Jonathan C. Bird,et al.  CHEMICAL CARTOGRAPHY WITH APOGEE: METALLICITY DISTRIBUTION FUNCTIONS AND THE CHEMICAL STRUCTURE OF THE MILKY WAY DISK , 2015, 1503.02110.

[26]  Lund,et al.  The origin and evolution of the odd-Z iron-peak elements Sc, V, Mn, and Co in the Milky Way stellar disk ?,?? , 2015, 1502.01152.

[27]  J. Prieto,et al.  ON THE INTRINSIC DIVERSITY OF TYPE II-PLATEAU SUPERNOVAE , 2015, 1501.06573.

[28]  E. Athanassoula,et al.  Evolution of the Milky Way with radial motions of stars and gas - I. The solar neighbourhood and the thin and thick disks , 2014, 1412.0585.

[29]  E. Athanassoula,et al.  Evolution of the Milky Way with radial motions of stars and gas II. The evolution of abundance profiles from H to Ni , 2014, 1412.4859.

[30]  L. Pasquini,et al.  The Gaia-ESO Survey: the analysis of high-resolution UVES spectra of FGK-type stars , 2014, 1409.0568.

[31]  M. Irwin,et al.  The Gaia-ESO Survey: Stellar content and elemental abundances in the massive cluster NGC 6705 , 2014, 1407.1510.

[32]  Sergey E. Koposov,et al.  The Gaia-ESO Survey: the Galactic thick to thin disc transition , 2014, 1403.7568.

[33]  C. D. Laney,et al.  On the fine structure of the Cepheid metallicity gradient in the Galactic thin disk , 2014, 1403.6128.

[34]  C. Babusiaux,et al.  The Gaia-ESO Survey: processing FLAMES-UVES spectra , 2014 .

[35]  Sergey E. Koposov,et al.  Gaia-ESO Survey: Properties of the intermediate age open cluster NGC 4815 , 2014, 1403.7451.

[36]  C. Chiappini,et al.  Chemodynamical evolution of the Milky Way disk II: Variations with Galactic radius and height above the disk plane , 2014, 1401.5796.

[37]  T. Beers,et al.  CHEMICAL CARTOGRAPHY WITH APOGEE: LARGE-SCALE MEAN METALLICITY MAPS OF THE MILKY WAY DISK , 2013, 1311.4569.

[38]  A. Korn,et al.  Abundances and possible diffusion of elements in M 67 stars , 2013, 1310.6297.

[39]  Sergey E. Koposov,et al.  The Gaia-ESO Survey: Reevaluation of the parameters of the open cluster Trumpler 20 using photometry and spectroscopy , 2013, 1312.3925.

[40]  E. Athanassoula,et al.  Radial migration in a bar-dominated disk galaxy I: Impact on chemical evolution , 2013, 1309.2437.

[41]  T. Beers,et al.  THE OPEN CLUSTER CHEMICAL ANALYSIS AND MAPPING SURVEY: LOCAL GALACTIC METALLICITY GRADIENT WITH APOGEE USING SDSS DR10 , 2013, 1308.4195.

[42]  K. Nomoto,et al.  Nucleosynthesis in Stars and the Chemical Enrichment of Galaxies , 2013 .

[43]  A. Chieffi,et al.  PRE-SUPERNOVA EVOLUTION OF ROTATING SOLAR METALLICITY STARS IN THE MASS RANGE 13–120 M☉ AND THEIR EXPLOSIVE YIELDS , 2012, 1212.2759.

[44]  L. Girardi,et al.  parsec: stellar tracks and isochrones with the PAdova and TRieste Stellar Evolution Code , 2012, 1208.4498.

[45]  B. Carney,et al.  ELEMENTAL ABUNDANCE RATIOS IN STARS OF THE OUTER GALACTIC DISK. IV. A NEW SAMPLE OF OPEN CLUSTERS , 2012, 1206.6931.

[46]  M. Martig,et al.  Radial migration does little for Galactic disc thickening , 2012, 1205.6475.

[47]  Sergio Ortolani,et al.  The Gaia-ESO Public Spectroscopic Survey , 2012 .

[48]  A. Bijaoui,et al.  A spectroscopic survey of thick disc stars outside the solar neighbourhood , 2011, 1110.5221.

[49]  J. Mel'endez,et al.  A FIRST CONSTRAINT ON THE THICK DISK SCALE LENGTH: DIFFERENTIAL RADIAL ABUNDANCES IN K GIANTS AT GALACTOCENTRIC RADII 4, 8, AND 12 kpc , 2011, 1106.1914.

[50]  F. Matteucci,et al.  Quantifying the uncertainties of chemical evolution studies II. Stellar yields , 2010, 1006.5863.

[51]  E. Rossetti,et al.  Chemical abundance analysis of the open clusters Cr 110, NGC 2099 (M 37), NGC 2420, NGC 7789, and M 67 (NGC 2682) , 2009, 0910.0723.

[52]  M. Asplund,et al.  The chemical composition of the Sun , 2009, 0909.0948.

[53]  J. Binney,et al.  Origin and structure of the Galactic disc(s) , 2009, 0907.1899.

[54]  S. Smartt,et al.  The VLT-FLAMES survey of massive stars: constraints on stellar evolution from the chemical compositions of rapidly rotating Galactic and Magellanic Cloud B-type stars , 2009, 0901.3853.

[55]  Laura Magrini,et al.  The evolution of the Galactic metallicity gradient from high-resolution spectroscopy of open clusters , 2008, 0812.0854.

[56]  S. Woosley,et al.  TYPE Ia SUPERNOVAE: CALCULATIONS OF TURBULENT FLAMES USING THE LINEAR EDDY MODEL , 2008, 0811.3610.

[57]  D. O. Astronomy,et al.  Open clusters as key tracers of Galactic chemical evolution. III. Element abundances in Berkeley 20 , 2008, 0807.2313.

[58]  P. Bonifacio,et al.  Solar twins in M67 , 2008, 0807.0092.

[59]  P. Bonifacio,et al.  The photospheric solar oxygen project. I. Abundance analysis of atomic lines and influence of atmosp , 2008, 0805.4398.

[60]  S. Villanova,et al.  Old open clusters as key tracers of Galactic chemical evolution II. Iron and elemental abundances in NGC 2324, NGC 2477, NGC 2660, NGC 3960, and Berkeley 32 , 2008 .

[61]  P. Frinchaboy,et al.  Old open clusters in the outer Galactic disk , 2007, 0709.2126.

[62]  E. Rosolowsky,et al.  The Role of Pressure in GMC Formation II: The H2-Pressure Relation , 2006, astro-ph/0605035.

[63]  B. Carney,et al.  Elemental Abundance Ratios in Stars of the Outer Galactic Disk. III. Cepheids , 2005, astro-ph/0512348.

[64]  C. Chiappini Galactic disk abundance ratios: constraining SNIa stellar yields , 2005 .

[65]  A. Bragaglia,et al.  The Bologna Open Cluster Chemical Evolution Project: Midterm Results from the Photometric Sample , 2005, astro-ph/0511020.

[66]  L. A. Antonelli,et al.  Interacting Binaries: Accretion, Evolution, Outcomes , 2005 .

[67]  Thomas G. Barnes,et al.  Cosmic Abundances as Records of Stellar Evolution and Nucleosynthesis in honor of David L. Lambert , 2005 .

[68]  G. Carraro,et al.  A photometric study of the old open clusters Berkeley 73, Berkeley 75 and Berkeley 25 , 2005, astro-ph/0506596.

[69]  B. Carney,et al.  Elemental Abundance Ratios in Stars of the Outer Galactic Disk. II. Field Red Giants , 2005, astro-ph/0506210.

[70]  B. Carney,et al.  Elemental Abundance Ratios in Stars of the Outer Galactic Disk. I. Open Clusters , 2005, astro-ph/0504193.

[71]  Potsdam,et al.  alpha-, r-, and s-process element trends in the Galactic thin and thick disks , 2004, astro-ph/0412132.

[72]  M. Asplund,et al.  The Solar Chemical Composition , 2004, astro-ph/0410214.

[73]  T. Beers,et al.  First stars VI - Abundances of C, N, O, Li, and mixing in extremely metal-poor giants. Galactic evolution of the light elements , 2004, astro-ph/0409536.

[74]  G. Carraro,et al.  Metal Abundances in Extremely Distant Galactic Old Open Clusters. I. Berkeley 29 and Saurer 1 , 2004, astro-ph/0406679.

[75]  T. Beers,et al.  First stars V - Abundance patterns from C to Zn and supernova yields in the early Galaxy , 2003, astro-ph/0311082.

[76]  A. Chieffi,et al.  Evolution, Explosion, and Nucleosynthesis of Core-Collapse Supernovae , 2003, astro-ph/0304185.

[77]  E. Totten,et al.  Membership, metallicity and lithium abundances for solar-type stars in NGC 6633 , 2002, astro-ph/0206367.

[78]  E. Grebel,et al.  Modes of star formation and the origin of field populations : proceedings of a workshop held at Max-Planck Institute of Astronomy, Heidelberg, Germany, 9-13 October 2000 , 2002 .

[79]  Michael S. Bessell,et al.  The Open Cluster NGC 2516. I. Optical Photometry , 2002 .

[80]  Koichi Iwamoto,et al.  Nucleosynthesis in Chandrasekhar Mass Models for Type Ia Supernovae and Constraints on Progenitor Systems and Burning-Front Propagation , 1999 .

[81]  D. Geisler,et al.  A Photometric and Spectroscopic Study of the Southern Open Clusters Pismis 18, Pismis 19, NGC 6005, and NGC 6253 , 1998 .

[82]  J. Clariá,et al.  Chemical Evolution of the Galactic Disk: Evidence for a Gradient Perpendicular to the Galactic Plane , 1995 .

[83]  B. Pagel,et al.  Chemical evolution of primary elements in the Galactic disc: an analytical model , 1995 .

[84]  S. Woosley,et al.  The Evolution and Explosion of Massive Stars. II. Explosive Hydrodynamics and Nucleosynthesis , 1995 .

[85]  E. D. Friel,et al.  The Old Open Clusters of the Milky Way , 1995 .

[86]  K. Janes,et al.  Properties of the Open Cluster System , 1988 .

[87]  K. Janes Evidence for an abundance gradient in the galactic disk , 1979 .