Interplanetary Trajectory Optimization with Swing-Bys Using Evolutionary Multi-objective Optimization

Interplanetary trajectory optimization studies mostly considered a single objective of minimizing travel time between two planets or launch velocity of spacecraft at the departure planet or maximizing delivered payload at the destination planet. Despite a few studies, in this paper, we have considered a simultaneous minimization study of both launch velocity and time of travel between two specified planets with and without the use of gravitational advantage (swing-by) of some intermediate planets. Using careful consideration of a Lambert's approach with the Newton-Raphson based root finding procedure of developing a trajectory dictated by a set of variables, a number of derived parameters, such as time of flight between arrival and destination planet, date of arrival, and launch velocity, are computed. A commonly-used evolutionary multi-objective optimization algorithm (NSGA-II) is then employed to find a set of trade-off solutions. The accuracy of the developed software (we called GOSpel) is demonstrated by matching the trajectories with known missions.