The structure of the PA28–20S proteasome complex from Plasmodium falciparum and implications for proteostasis

[1]  E. Winzeler,et al.  Target Validation and Identification of Novel Boronate Inhibitors of the Plasmodium falciparum Proteasome , 2018, Journal of medicinal chemistry.

[2]  Andreas Martin,et al.  Substrate-engaged 26S proteasome structures reveal mechanisms for ATP-hydrolysis–driven translocation , 2018, Science.

[3]  G. Lander,et al.  Substrate-engaged 26Sproteasome structures reveal mechanisms for ATP-hydrolysis-driven translocation. , 2018 .

[4]  S. Ralph,et al.  Artemisinin kills malaria parasites by damaging proteins and inhibiting the proteasome , 2018, Nature Communications.

[5]  M. Bogyo,et al.  Defining the Determinants of Specificity of Plasmodium Proteasome Inhibitors. , 2018, Journal of the American Chemical Society.

[6]  M. Foley,et al.  Antimalarial proteasome inhibitor reveals collateral sensitivity from intersubunit interactions and fitness cost of resistance , 2018, Proceedings of the National Academy of Sciences.

[7]  W. Baumeister,et al.  Expanded Coverage of the 26S Proteasome Conformational Landscape Reveals Mechanisms of Peptidase Gating , 2018, Cell reports.

[8]  B. Tye,et al.  Structure of the origin recognition complex bound to DNA replication origin , 2018, Nature.

[9]  L. Pearl,et al.  RPAP3 provides a flexible scaffold for coupling HSP90 to the human R2TP co-chaperone complex , 2018, Nature Communications.

[10]  Youdong Mao,et al.  Structural mechanism for nucleotide-driven remodeling of the AAA-ATPase unfoldase in the activated human 26S proteasome , 2018, Nature Communications.

[11]  E. Lindahl,et al.  Characterisation of molecular motions in cryo-EM single-particle data by multi-body refinement in RELION , 2018, bioRxiv.

[12]  J. Trewhella,et al.  An optimized SEC-SAXS system enabling high X-ray dose for rapid SAXS assessment with correlated UV measurements for biomolecular structure analysis , 2018 .

[13]  Randy J Read,et al.  Real-space refinement in PHENIX for cryo-EM and crystallography , 2018, bioRxiv.

[14]  Thomas C Terwilliger,et al.  Automated map sharpening by maximization of detail and connectivity , 2018, bioRxiv.

[15]  Christopher J. Williams,et al.  MolProbity: More and better reference data for improved all‐atom structure validation , 2018, Protein science : a publication of the Protein Society.

[16]  R. Tampé,et al.  Structure of the human MHC-I peptide-loading complex , 2017, Nature.

[17]  P. V. Konarev,et al.  ATSAS 2.8: a comprehensive data analysis suite for small-angle scattering from macromolecular solutions , 2017, Journal of applied crystallography.

[18]  D. Goldberg,et al.  The chaperonin TRiC forms an oligomeric complex in the malaria parasite cytosol , 2017, Cellular microbiology.

[19]  Xueming Li,et al.  Mechanism of chromatin remodelling revealed by the Snf2-nucleosome structure , 2017, Nature.

[20]  K. Klingel,et al.  PA28 modulates antigen processing and viral replication during coxsackievirus B3 infection , 2017, PloS one.

[21]  D. Agard,et al.  MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy , 2017, Nature Methods.

[22]  Timothy M. Ryan,et al.  Improved radiation dose efficiency in solution SAXS using a sheath flow sample environment , 2016, Acta crystallographica. Section D, Structural biology.

[23]  D. Goldberg,et al.  Exported Epoxide Hydrolases Modulate Erythrocyte Vasoactive Lipids during Plasmodium falciparum Infection , 2016, mBio.

[24]  E. Lindahl,et al.  Accelerated cryo-EM structure determination with parallelisation using GPUs in RELION-2 , 2016, bioRxiv.

[25]  Kornel Labun,et al.  CHOPCHOP v2: a web tool for the next generation of CRISPR genome engineering , 2016, Nucleic Acids Res..

[26]  T. Chiba,et al.  Proteasome activators, PA28γ and PA200, play indispensable roles in male fertility , 2016, Scientific Reports.

[27]  Min Jae Lee,et al.  Open-gate mutants of the mammalian proteasome show enhanced ubiquitin-conjugate degradation , 2016, Nature Communications.

[28]  M. Bogyo,et al.  Structure and function based design of Plasmodium-selective proteasome inhibitors , 2016, Nature.

[29]  Kai Zhang,et al.  Gctf: Real-time CTF determination and correction , 2015, bioRxiv.

[30]  Zbynek Bozdech,et al.  TARGETING THE CELL STRESS RESPONSE OF PLASMODIUM FALCIPARUM TO OVERCOME ARTEMISININ RESISTANCE , 2015 .

[31]  J. Sacchettini,et al.  Crystal structure of the human 20S proteasome in complex with carfilzomib. , 2015, Structure.

[32]  Nathaniel Echols,et al.  EMRinger: Side-chain-directed model and map validation for 3D Electron Cryomicroscopy , 2015, Nature Methods.

[33]  Sjors H.W. Scheres,et al.  Semi-automated selection of cryo-EM particles in RELION-1.3 , 2015, Journal of structural biology.

[34]  Haydyn D. T. Mertens,et al.  A low-background-intensity focusing small-angle X-ray scattering undulator beamline , 2013 .

[35]  H. Al-Ahmadie,et al.  ARF Regulates the Stability of p16 Protein Via REGγ-Dependent Proteasome Degradation , 2013, Molecular Cancer Research.

[36]  Philip R. Evans,et al.  How good are my data and what is the resolution? , 2013, Acta crystallographica. Section D, Biological crystallography.

[37]  Daniel W. A. Buchan,et al.  Scalable web services for the PSIPRED Protein Analysis Workbench , 2013, Nucleic Acids Res..

[38]  Keiji Tanaka,et al.  Spatial arrangement and functional role of α subunits of proteasome activator PA28 in hetero-oligomeric form. , 2013, Biochemical and biophysical research communications.

[39]  S. Demo,et al.  Validation of the proteasome as a therapeutic target in Plasmodium using an epoxyketone inhibitor with parasite-specific toxicity. , 2012, Chemistry & biology.

[40]  A. Dunker,et al.  Sweeping away protein aggregation with entropic bristles: intrinsically disordered protein fusions enhance soluble expression. , 2012, Biochemistry.

[41]  E. Morris,et al.  Molecular model of the human 26S proteasome. , 2012, Molecular cell.

[42]  Paul D. Adams,et al.  Use of knowledge-based restraints in phenix.refine to improve macromolecular refinement at low resolution , 2012, Acta crystallographica. Section D, Biological crystallography.

[43]  Maxim V. Petoukhov,et al.  New developments in the ATSAS program package for small-angle scattering data analysis , 2012, Journal of applied crystallography.

[44]  Ricarda Schwab,et al.  Immuno- and Constitutive Proteasome Crystal Structures Reveal Differences in Substrate and Inhibitor Specificity , 2012, Cell.

[45]  Min Jae Lee,et al.  An asymmetric interface between the regulatory particle and core particle of the proteasome , 2011, Nature Structural &Molecular Biology.

[46]  J. García de la Torre,et al.  Prediction of hydrodynamic and other solution properties of rigid proteins from atomic- and residue-level models. , 2011, Biophysical journal.

[47]  Joanne M. Morrisey,et al.  Yeast dihydroorotate dehydrogenase as a new selectable marker for Plasmodium falciparum transfection. , 2011, Molecular and biochemical parasitology.

[48]  Philip R. Evans,et al.  An introduction to data reduction: space-group determination, scaling and intensity statistics , 2011, Acta crystallographica. Section D, Biological crystallography.

[49]  Randy J. Read,et al.  Overview of the CCP4 suite and current developments , 2011, Acta crystallographica. Section D, Biological crystallography.

[50]  Xuejun Wang,et al.  Enhancement of proteasome function by PA28α overexpression protects against oxidative stress , 2011, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[51]  P. Kloetzel,et al.  Immunoproteasomes Preserve Protein Homeostasis upon Interferon-Induced Oxidative Stress , 2010, Cell.

[52]  K. Davies,et al.  THE IMMUNOPROTEASOME, THE 20S PROTEASOME, AND THE PA28αβ PROTEASOME REGULATOR ARE OXIDATIVE STRESS‐ADAPTIVE PROTEOLYTIC COMPLEXES , 2010, The Biochemical journal.

[53]  Kevin Cowtan,et al.  Recent developments in classical density modification , 2010, Acta crystallographica. Section D, Biological crystallography.

[54]  P. Emsley,et al.  Features and development of Coot , 2010, Acta crystallographica. Section D, Biological crystallography.

[55]  Randy J. Read,et al.  Acta Crystallographica Section D Biological , 2003 .

[56]  Huilin Li,et al.  Inhibitors Selective for Mycobacterial versus Human Proteasomes , 2009, Nature.

[57]  Amy L. Robertson,et al.  Enhancing the stability and solubility of TEV protease using in silico design , 2007, Protein science : a publication of the Protein Society.

[58]  Soyeon Park,et al.  Docking of the proteasomal ATPases' carboxyl termini in the 20S proteasome's alpha ring opens the gate for substrate entry. , 2007, Molecular cell.

[59]  Randy J. Read,et al.  Phaser crystallographic software , 2007, Journal of applied crystallography.

[60]  James M. Roberts,et al.  Ubiquitin-independent degradation of cell-cycle inhibitors by the REGgamma proteasome. , 2007, Molecular cell.

[61]  Kevin Cowtan,et al.  The Buccaneer software for automated model building. 1. Tracing protein chains. , 2006, Acta crystallographica. Section D, Biological crystallography.

[62]  Laxmikant V. Kalé,et al.  Scalable molecular dynamics with NAMD , 2005, J. Comput. Chem..

[63]  C. Hill,et al.  The 1.9 A structure of a proteasome-11S activator complex and implications for proteasome-PAN/PA700 interactions. , 2005, Molecules and Cells.

[64]  Conrad C. Huang,et al.  UCSF Chimera—A visualization system for exploratory research and analysis , 2004, J. Comput. Chem..

[65]  A. Ciechanover,et al.  The Tumor Suppressor Protein p16INK4a and the Human Papillomavirus Oncoprotein-58 E7 Are Naturally Occurring Lysine-less Proteins That Are Degraded by the Ubiquitin System , 2004, Journal of Biological Chemistry.

[66]  C. Hill,et al.  The pore of activated 20S proteasomes has an ordered 7‐fold symmetric conformation , 2003, The EMBO journal.

[67]  A. Goldberg,et al.  Properties of the hybrid form of the 26S proteasome containing both 19S and PA28 complexes , 2002, The EMBO journal.

[68]  Nathan A. Baker,et al.  Electrostatics of nanosystems: Application to microtubules and the ribosome , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[69]  D I Svergun,et al.  Determination of domain structure of proteins from X-ray solution scattering. , 2001, Biophysical journal.

[70]  C. Hill,et al.  Structural basis for the activation of 20S proteasomes by 11S regulators , 2000, Nature.

[71]  R. Huber,et al.  A gated channel into the proteasome core particle , 2000, Nature Structural Biology.

[72]  P. Schuck,et al.  Determination of the sedimentation coefficient distribution by least-squares boundary modeling. , 2000, Biopolymers.

[73]  Y. Murakami,et al.  Hybrid Proteasomes , 2000, The Journal of Biological Chemistry.

[74]  M. Rechsteiner,et al.  Proteasome Activation by REG Molecules Lacking Homolog-specific Inserts* , 1998, The Journal of Biological Chemistry.

[75]  C. Hill,et al.  Identification of an activation region in the proteasome activator REGalpha. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[76]  C. Hill,et al.  Structure of the proteasome activator REGα (PA28α) , 1997, Nature.

[77]  R. Huber,et al.  Structure of 20S proteasome from yeast at 2.4Å resolution , 1997, Nature.

[78]  Daniel I. C. Wang,et al.  Specific aggregation of partially folded polypeptide chains: The molecular basis of inclusion body composition , 1996, Nature Biotechnology.

[79]  R. Fairman,et al.  Structural characterization of the tumor suppressor p16, an ankyrin‐like repeat protein , 1996, Protein science : a publication of the Protein Society.

[80]  K Schulten,et al.  VMD: visual molecular dynamics. , 1996, Journal of molecular graphics.

[81]  D. Svergun,et al.  CRYSOL : a program to evaluate X-ray solution scattering of biological macromolecules from atomic coordinates , 1995 .

[82]  R. Huber,et al.  Crystal structure of the 20S proteasome from the archaeon T. acidophilum at 3.4 A resolution. , 1995, Science.

[83]  C. Slaughter,et al.  PA28, an activator of the 20 S proteasome, is composed of two nonidentical but homologous subunits. , 1994, The Journal of biological chemistry.

[84]  T. Blundell,et al.  Comparative protein modelling by satisfaction of spatial restraints. , 1993, Journal of molecular biology.

[85]  T. Arndt Crystal , 2019, Springer Reference Medizin.

[86]  T. Triglia,et al.  Negative selection of Plasmodium falciparum reveals targeted gene deletion by double crossover recombination. , 2002, International journal for parasitology.

[87]  Y. Murakami,et al.  Hybrid proteasomes. Induction by interferon-gamma and contribution to ATP-dependent proteolysis. , 2000, The Journal of biological chemistry.

[88]  W. Baumeister,et al.  The 26S proteasome: a molecular machine designed for controlled proteolysis. , 1999, Annual review of biochemistry.