RF Performance and Small-Signal Parameter Extraction of Junctionless Silicon Nanowire MOSFETs

This paper presents a radio-frequency (RF) model and extracted model parameters for junctionless silicon nanowire (JLSNW) metal-oxide-semiconductor field-effect transistors (MOSFETs) using a 3-D device simulator. JLSNW MOSFETs are evaluated for various RF parameters such as cutoff frequency fT, gate input capacitance, distributed channel resistances, transport time delay, and capacitance by the drain-induced barrier lowering effect. Direct comparisons of high-frequency performances and extracted parameters are made with conventional silicon nanowire MOSFETs. A non-quasi-static RF model has been used, along with SPICE to simulate JLSNW MOSFETs with RF parameters extracted from 3-D-simulated Y-parameters. The results show excellent agreements with the 3-D-simulated results up to the high frequency of fT.

[1]  Donhee Ham,et al.  Nanotechnology: High-speed integrated nanowire circuits , 2005, Nature.

[2]  Tsu-Jae King,et al.  A comparison study of symmetric ultrathin-body double-gate devices with metal source/drain and doped source/drain , 2005, IEEE Transactions on Electron Devices.

[3]  I. Chung,et al.  NANOCAD Framework for Simulation of Quantum Effects in Nanoscale MOSFET Devices , 2006 .

[4]  Wei Lu,et al.  TOPICAL REVIEW: Semiconductor nanowires , 2006 .

[5]  Mark S. Lundstrom,et al.  A computational study of thin-body, double-gate, Schottky barrier MOSFETs , 2002 .

[6]  Lianmao Peng,et al.  Current-voltage characteristics and parameter retrieval of semiconducting nanowires , 2006 .

[7]  Chih-Hong Hwang,et al.  The effect of the geometry aspect ratio on the silicon ellipse-shaped surrounding- gate field-effect transistor and circuit , 2009 .

[8]  Yun Seop Yu,et al.  A SPICE-Compatible New Silicon Nanowire Field-Effect Transistors (SNWFETs) Model , 2009, IEEE Transactions on Nanotechnology.

[9]  Charles M Lieber,et al.  Semiconductor nanowires , 2006 .

[10]  Sorin Cristoloveanu,et al.  Fringing fields in sub-0.1 μm fully depleted SOI MOSFETs: optimization of the device architecture , 2002 .

[11]  Yiming Li,et al.  DC baseband and high-frequency characteristics of a silicon nanowire field effect transistor circuit , 2009 .

[12]  J. Fischer,et al.  Synthesis and postgrowth doping of silicon nanowires , 2005 .

[13]  Y. Tsividis Operation and modeling of the MOS transistor , 1987 .

[14]  B. Iñíguez,et al.  Continuous analytic I-V model for surrounding-gate MOSFETs , 2004, IEEE Electron Device Letters.

[15]  Charles M. Lieber,et al.  High Performance Silicon Nanowire Field Effect Transistors , 2003 .

[16]  Ru Huang,et al.  Investigation of Parasitic Effects and Design Optimization in Silicon Nanowire MOSFETs for RF Applications , 2008, IEEE Transactions on Electron Devices.

[17]  Byung-Gook Park,et al.  Fabrication of Highly Scaled Silicon Nanowire Gate-All-Around Metal–Oxide–Semiconductor Field Effect Transistors by Using Self-Aligned Local-Channel V-gate by Optical Lithography Process , 2010 .

[18]  Jong-Ho Lee,et al.  Formation of Ge nanocrystals in a silicon dioxide layer using pulsed plasma-immersion ion implantation , 2009 .

[19]  B. Ryu,et al.  Gate-All-Around (GAA) Twin Silicon Nanowire MOSFET (TSNWFET) with 15 nm Length Gate and 4 nm Radius Nanowires , 2006, 2006 International Electron Devices Meeting.

[20]  Accurate simulation on band-to-band tunneling induced leakage current using a global non-local model , 1995, Proceedings of 4th International Conference on Solid-State and IC Technology.

[21]  G. A. Armstrong,et al.  Source/Drain Extension Region Engineering in FinFETs for Low-Voltage Analog Applications , 2007, IEEE Electron Device Letters.

[22]  Hyungcheol Shin,et al.  Accurate four-terminal RF MOSFET model accounting for the short-channel effect in the source-to-drain capacitance , 2003, International Conference on Simulation of Semiconductor Processes and Devices, 2003. SISPAD 2003..

[23]  Chi-Woo Lee,et al.  Junctionless multigate field-effect transistor , 2009 .

[24]  Ru Huang,et al.  Analog/RF Performance of Si Nanowire MOSFETs and the Impact of Process Variation , 2007, IEEE Transactions on Electron Devices.

[25]  Chi-Woo Lee,et al.  Low subthreshold slope in junctionless multigate transistors , 2010 .

[26]  Xing Zhang,et al.  A Compact Model of Silicon-Based Nanowire MOSFETs for Circuit Simulation and Design , 2008, IEEE Transactions on Electron Devices.

[27]  Jean-Pierre Colinge,et al.  Conduction mechanisms in thin-film accumulation-mode SOI p-channel MOSFETs , 1990 .

[28]  Chi-Woo Lee,et al.  Reduced electric field in junctionless transistors , 2010 .

[29]  G. S. Samudra,et al.  A new robust non-local algorithm for band-to-band tunneling simulation and its application to Tunnel-FET , 2009, 2009 International Symposium on VLSI Technology, Systems, and Applications.

[30]  A. Bindal,et al.  Spice Modeling of Silicon Nanowire Field-Effect Transistors for High-Speed Analog Integrated Circuits , 2008, IEEE Transactions on Nanotechnology.

[31]  F. Balestra,et al.  Double-gate silicon-on-insulator transistor with volume inversion: A new device with greatly enhanced performance , 1987, IEEE Electron Device Letters.

[32]  Chi-Woo Lee,et al.  High-Temperature Performance of Silicon Junctionless MOSFETs , 2010, IEEE Transactions on Electron Devices.

[33]  Yuan Taur,et al.  A Review on Compact Modeling of Multiple-Gate MOSFETs , 2009, IEEE Transactions on Circuits and Systems I: Regular Papers.

[34]  N. Collaert,et al.  Analysis of the parasitic S/D resistance in multiple-gate FETs , 2005, IEEE Transactions on Electron Devices.

[35]  S. Cristoloveanu,et al.  Gate-Length and Drain-Bias Dependence of Band-to-Band Tunneling-Induced Drain Leakage in Irradiated Fully Depleted SOI Devices , 2008, IEEE Transactions on Nuclear Science.

[36]  K. Endo,et al.  Experimental Evaluation of Effects of Channel Doping on Characteristics of FinFETs , 2007, IEEE Electron Device Letters.

[37]  A. Mercha,et al.  Planar Bulk MOSFETs Versus FinFETs: An Analog/RF Perspective , 2006, IEEE Transactions on Electron Devices.