Parallel scalability and efficiency of vortex particle method for aeroelasticity analysis of bluff bodies

This paper presents an analysis of the scalability and efficiency of a simulation framework based on the vortex particle method. The code is applied for the numerical aerodynamic analysis of line-like structures. The numerical code runs on multicore CPU and GPU architectures using OpenCL framework. The focus of this paper is the analysis of the parallel efficiency and scalability of the method being applied to an engineering test case, specifically the aeroelastic response of a long-span bridge girder at the construction stage. The target is to assess the optimal configuration and the required computer architecture, such that it becomes feasible to efficiently utilise the method within the computational resources available for a regular engineering office. The simulations and the scalability analysis are performed on a regular gaming type computer.

[1]  Leslie Greengard,et al.  A fast algorithm for particle simulations , 1987 .

[2]  L. Rosenhead The Formation of Vortices from a Surface of Discontinuity , 1931 .

[3]  Mark D. Hill,et al.  What is scalability? , 1990, CARN.

[4]  A. Chorin Numerical study of slightly viscous flow , 1973, Journal of Fluid Mechanics.

[5]  Wing Kam Liu,et al.  Meshfree and particle methods and their applications , 2002 .

[6]  G. Morgenthal,et al.  Pseudo three-dimensional simulation of aeroelastic response to turbulent wind using Vortex Particle Methods , 2017 .

[7]  Guido Morgenthal,et al.  Framework for sensitivity and uncertainty quantification in the flutter assessment of bridges , 2016 .

[8]  You-Lin Xu,et al.  Wind Effects on Cable-Supported Bridges , 2013 .

[9]  Diego Rossinelli,et al.  MRAG-I2D: Multi-resolution adapted grids for remeshed vortex methods on multicore architectures , 2015, J. Comput. Phys..

[10]  Guido Morgenthal,et al.  Flow reproduction using Vortex Particle Methods for simulating wake buffeting response of bluff structures , 2016 .

[11]  Grégoire Winckelmans,et al.  Combining the vortex-in-cell and parallel fast multipole methods for efficient domain decomposition simulations , 2008, J. Comput. Phys..

[12]  Martin J. Gander,et al.  Chladni Figures and the Tacoma Bridge: Motivating PDE Eigenvalue Problems via Vibrating Plates , 2012, SIAM Rev..

[13]  L. Barba,et al.  Advances in viscous vortex methods—meshless spatial adaption based on radial basis function interpolation , 2005 .

[14]  W. S. Hall,et al.  Boundary Element Method , 2006 .

[15]  W. S. Hall Boundary Element Method , 1994 .

[16]  Michael E. Agishtein,et al.  Dynamics of vortex surfaces in three dimensions: theory and simulations , 1989 .

[17]  Ian Taylor,et al.  Application of a discrete vortex method for the analysis of suspension bridge deck sections , 2001 .

[18]  H. Helmholtz LXIII. On Integrals of the hydrodynamical equations, which express vortex-motion , 1858 .

[19]  P. A. Smith,et al.  Impulsively started flow around a circular cylinder by the vortex method , 1988, Journal of Fluid Mechanics.

[20]  Jeff D. Eldredge,et al.  Numerical simulation of the fluid dynamics of 2D rigid body motion with the vortex particle method , 2007, J. Comput. Phys..

[21]  Andrew W. Appel,et al.  An Efficient Program for Many-Body Simulation , 1983 .

[22]  Valerio Pascucci,et al.  The Helmholtz-Hodge Decomposition—A Survey , 2013, IEEE Transactions on Visualization and Computer Graphics.

[23]  G. Winckelmans,et al.  Vortex methods for high-resolution simulations of viscous flow past bluff bodies of general geometry , 2000 .

[24]  Petros Koumoutsakos,et al.  Vortex Methods: Theory and Practice , 2000 .

[25]  Guido Morgenthal,et al.  An immersed interface method for the Vortex-In-Cell algorithm , 2007 .

[26]  K. Kuwahara,et al.  Numerical Studies of Two-Dimensional Vortex Motion by a System of Point Vortices , 1973 .

[27]  A. Larsen,et al.  Two dimensional discrete vortex method for application to bluff body aerodynamics , 1997 .

[28]  Chien-Cheng Chang Random vortex methods for the Navier-Stokes equations , 1988 .

[29]  D. W. Moore,et al.  The motion of a vortex filament with axial flow , 1972, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[30]  Robert Speck,et al.  Generalized Algebraic Kernels and Multipole Expansions for Massively Parallel Vortex Particle Methods , 2018 .

[31]  John Banks,et al.  Design and Construction of the Mersey Gateway Bridge , 2014 .

[32]  M. S. Warren,et al.  A parallel hashed Oct-Tree N-body algorithm , 1993, Supercomputing '93.

[33]  Guido Morgenthal,et al.  A GPU-accelerated pseudo-3D vortex method for aerodynamic analysis , 2014 .

[34]  Andrew J. Majda,et al.  High order accurate vortex methods with explicit velocity kernels , 1985 .

[35]  Allan Larsen,et al.  Discrete vortex method simulations of the aerodynamic admittance in bridge aerodynamics , 2010 .