Based on u-n under the Flux Observer Spindle Motor Direct Torque Control System Simulation

Purpose: to study the performance of DTC system (direct torque control) within the Motorized Spindle full-speed range, and to improve the observation precision of Motorized Spindle stator flux by adopting the Full-order stator flux observer. Method: construct a Motorized Spindle DTC system based on the mathematical model of Motorized Spindle under a static stator reference frame; revise the deviation between status value and measured value of the Motorized Spindle, then build a Full-order magnetic flux observer with error-compensator based on close-loop state estimation by combining the feedback correction term and the mathematical model of Motorized Spindle with flux estimation; build a Full-order flux observer and simulate the Motorized Spindle DTC system by Matlab/Simulink so that the simulative waveform of stator flux would be obtained. Result: the correctness of Full-order stator flux observer at various speed ranges is verified. Conclusion: Full-order u-n stator flux observer shows satisfactory dynamic performance in Motorized Spindle DTC system; the u-n stator flux observer model that is constructed by choosing the proper way to set the pole of observer reduces the interference of temperature, frequency, magnetic path etc.