Chance-constrained model predictive control for spacecraft rendezvous with disturbance estimation

Abstract A robust Model Predictive Controller (MPC) is used to solve the problem of spacecraft rendezvous, using the Hill–Clohessy–Wiltshire model with additive disturbances and line-of-sight constraints. Since a standard (non-robust) MPC is not able to cope with disturbances, a robust MPC is designed using a chance-constrained approach for robust satisfaction of constraints in a probabilistic sense. Disturbances are modeled as Gaussian allowing for an explicit transformation of the probabilistic constraints into simple algebraic constraints. To estimate the distribution parameters a predictor of disturbances is proposed. Both robust and non-robust MPC control laws are compared using the Monte Carlo method, which shows the superiority of the robust MPC.

[1]  Bong Wie,et al.  Space Vehicle Dynamics and Control , 1998 .

[2]  W. H. Clohessy,et al.  Terminal Guidance System for Satellite Rendezvous , 2012 .

[3]  P.K.C. Wang,et al.  Formation Flying of Multiple Spacecraft with Automatic Rendezvous and Docking Capability , 2003 .

[4]  T. Carter State Transition Matrices for Terminal Rendezvous Studies: Brief Survey and New Example , 1998 .

[5]  Stephen Kemble,et al.  Automated Rendezvous and Docking of Spacecraft , 2007 .

[6]  Manuel Berenguel,et al.  Adaptive generalized predictive control of a distributed collector field , 1994, IEEE Trans. Control. Syst. Technol..

[7]  J. How,et al.  Relative Dynamics and Control of Spacecraft Formations in Eccentric Orbits , 2000 .

[8]  M. Wendt,et al.  Robust model predictive control under chance constraints , 2000 .

[9]  Max Donath,et al.  American Control Conference , 1993 .

[10]  Bernhard P. Wrobel,et al.  Multiple View Geometry in Computer Vision , 2001 .

[11]  Michael Nikolaou,et al.  Chance‐constrained model predictive control , 1999 .

[12]  G. Hill Researches in the Lunar Theory , 1878 .

[13]  David E. Booth,et al.  Multivariate statistical inference and applications , 1997 .

[14]  Jonathan P. How,et al.  Spacecraft trajectory planning with avoidance constraints using mixed-integer linear programming , 2002 .

[15]  Jonathan P. How,et al.  Performance evaluation of rendezvous using model predictive control , 2003 .

[16]  Jonathan P. How,et al.  Analysis of the impact of sensor noise on formation flying control , 2001, Proceedings of the 2001 American Control Conference. (Cat. No.01CH37148).

[17]  Thomas Carter,et al.  Orbits and Relative Motion in the Gravitational Field of an Oblate Body , 2008 .

[18]  Arthur G. Richards,et al.  Robust constrained model predictive control , 2005 .

[19]  Jonathan P. How,et al.  Safe Trajectories for Autonomous Rendezvous of Spacecraft , 2006 .

[20]  David K. Geller,et al.  Navigating the Road to Autonomous Orbital Rendezvous , 2007 .

[21]  David K. Geller,et al.  Linear Covariance Techniques for Orbital Rendezvous Analysis and Autonomous Onboard Mission Planning , 2005 .

[22]  Mark Costello,et al.  Nonlinear Model Predictive Control Technique for Unmanned Air Vehicles , 2006 .