Current transport modeling of carbon nanotube field effect transistors

In the present work, analytical modeling equations describing the current transport in carbon nanotube field effect transistors (CNT-FETs) have been developed from physical electronics, which have strong dependence on the chiral vector and device geometries. These model equations for the CNT-FETs have been compared with the available experimental data and then used to generate voltage transfer characteristics of basic logic devices based on complementary CNT-FETs. The voltage transfer characteristics exhibit characteristics similar to the voltage transfer characteristics of standard CMOS logic devices, with a sharp transition near the logic threshold voltage depending on the input conditions. (© 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)

[1]  Kaushik Roy,et al.  A circuit-compatible model of ballistic carbon nanotube field-effect transistors , 2004, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[2]  P. Avouris,et al.  Carbon Nanotube Inter- and Intramolecular Logic Gates , 2001 .

[3]  T. Zimmer,et al.  Computationally Efficient Physics-Based Compact CNTFET Model for Circuit Design , 2008, IEEE Transactions on Electron Devices.

[4]  Mark S. Lundstrom,et al.  High-κ dielectrics for advanced carbon-nanotube transistors and logic gates , 2002 .

[5]  Paul B. Ruffin,et al.  Army requirements for micro and nanotechnology-based sensors in weapons health and battlefield environmental monitoring applications , 2006, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[6]  Extrapolated fmax for carbon nanotube field-effect transistors , 2006 .

[7]  P. J. Burke An RF circuit model for carbon nanotubes , 2003 .

[8]  W. D. de Heer,et al.  Carbon Nanotubes--the Route Toward Applications , 2002, Science.

[9]  A. Srivastava,et al.  Carrier Density and Effective Mass Calculations for Carbon Nanotubes , 2007, 2007 IEEE International Conference on Integrated Circuit Design and Technology.

[10]  B. Streetman Solid state electronic devices , 1972 .

[11]  S. Tans,et al.  Room-temperature transistor based on a single carbon nanotube , 1998, Nature.

[12]  Kaushik Roy,et al.  Low-Power CMOS VLSI Circuit Design , 2000 .

[13]  Qian Wang,et al.  Carbon Nanotube Transistor Arrays for Multistage Complementary Logic and Ring Oscillators , 2002, Nano Letters.

[14]  Anantha P. Chandrakasan,et al.  Low-Power CMOS Design , 1997 .

[15]  Kaushik Roy,et al.  Modeling of metallic carbon-nanotube interconnects for circuit simulations and a comparison with Cu interconnects for scaled technologies , 2006, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[16]  S. Iijima Helical microtubules of graphitic carbon , 1991, Nature.

[17]  Richard Martel,et al.  Fabrication and electrical characterization of top gate single-wall carbon nanotube field-effect transistors , 2002 .

[18]  Dekker,et al.  High-field electrical transport in single-wall carbon nanotubes , 1999, Physical review letters.

[19]  C. Lieber,et al.  Nanowire Nanosensors for Highly Sensitive and Selective Detection of Biological and Chemical Species , 2001, Science.

[20]  David L. Pulfrey,et al.  Electrostatics of coaxial Schottky-barrier nanotube field-effect transistors , 2003 .

[21]  C. Dekker,et al.  Logic Circuits with Carbon Nanotube Transistors , 2001, Science.

[22]  M. Lundstrom,et al.  Ballistic carbon nanotube field-effect transistors , 2003, Nature.

[23]  A. Rinzler,et al.  Electronic structure of atomically resolved carbon nanotubes , 1998, Nature.

[24]  Herbert Shea,et al.  Single- and multi-wall carbon nanotube field-effect transistors , 1998 .

[25]  K. Roy,et al.  Carbon-nanotube-based voltage-mode multiple-valued logic design , 2005, IEEE Transactions on Nanotechnology.

[26]  L. C. Castro,et al.  High-Frequency Capability of Schottky-Barrier Carbon Nanotube FETs , 2007 .

[27]  Yutaka Ohno,et al.  n-type carbon nanotube field-effect transistors fabricated by using Ca contact electrodes , 2005 .

[28]  Richard Martel,et al.  Vertical scaling of carbon nanotube field-effect transistors using top gate electrodes , 2002 .

[29]  S. Wind,et al.  Carbon nanotube electronics , 2003, Digest. International Electron Devices Meeting,.

[30]  Frédéric Gaffiot,et al.  CNTFET Modeling and Reconfigurable Logic-Circuit Design , 2007, IEEE Transactions on Circuits and Systems I: Regular Papers.

[31]  Peter Burke,et al.  AC performance of nanoelectronics: towards a ballistic THz nanotube transistor , 2004 .

[32]  Jing Guo,et al.  Carbon Nanotube Field-Effect Transistors with Integrated Ohmic Contacts and High-κ Gate Dielectrics , 2004 .

[33]  H. Wong,et al.  Schottky-Barrier Carbon Nanotube Field-Effect Transistor Modeling , 2007, IEEE Transactions on Electron Devices.