Weak sharp efficiency and growth condition for vector-valued functions with applications

We define weak sharp solutions to vector optimization problems and the growth condition for vector-valued functions. When applied to scalar-valued functions, weak sharp solutions reduce to weak sharp minima, and the growth condition reduces to the growth condition used in proving Holder calmness of the solution set to parametric scalar optimization problems. By using these concepts We prove upper Holder continuity and Holder calmness of the solution set-valued mapping to parametric vector optimization problems.

[1]  Alexander Shapiro,et al.  Conditioning of convex piecewise linear stochastic programs , 2002, Math. Program..

[2]  Peter Fusek,et al.  Examples and counterexamples in Lipschitz analysis , 2002 .

[3]  A. D. Ioffe On stability estimates for the regularity property of maps , 2003 .

[4]  M. Ferris,et al.  Weak sharp minima in mathematical programming , 1993 .

[5]  Bienvenido Jiménez,et al.  Strict Minimality Conditions in Nondifferentiable Multiobjective Programming , 2003 .

[6]  Ewa Bednarczuk,et al.  An approach to well-posedness in vector optimization: consequences to stability , 1994 .

[7]  A descent method for Pareto optimization , 1982 .

[8]  Marcin Studniarski,et al.  Weak Sharp Minima: Characterizations and Sufficient Conditions , 1999, SIAM J. Control. Optim..

[9]  V. Novo,et al.  First and second order sufficient conditions for strict minimality in nonsmooth vector optimization , 2003 .

[10]  Ewa M. Bednarczuk,et al.  A note on lower semicontinuity of minimal points , 2002 .

[11]  Adam B. Levy Calm Minima in Parameterized Finite-Dimensional Optimization , 2000, SIAM J. Optim..

[12]  C. Tammer,et al.  Theory of Vector Optimization , 2003 .

[13]  R. Rockafellar,et al.  The radius of metric regularity , 2002 .

[14]  Alberto Zaffaroni,et al.  Degrees of Efficiency and Degrees of Minimality , 2003, SIAM J. Control. Optim..

[15]  Xi Yin Zheng,et al.  Global Weak Sharp Minima on Banach Spaces , 2003, SIAM J. Control. Optim..

[16]  J. Aubin,et al.  Applied Nonlinear Analysis , 1984 .

[17]  J. Frédéric Bonnans,et al.  Perturbation Analysis of Optimization Problems , 2000, Springer Series in Operations Research.

[18]  James Renegar,et al.  Linear programming, complexity theory and elementary functional analysis , 1995, Math. Program..

[19]  Characterizations of strict local minima for some nonlinear programming problems , 1997 .

[20]  Roger J.-B. Wets,et al.  Quantitative Stability of Variational Systems II. A Framework for Nonlinear Conditioning , 1993, SIAM J. Optim..

[21]  Enrico Miglierina,et al.  Convergence of Minimal Sets in Convex Vector Optimization , 2005, SIAM J. Optim..

[22]  Alexander D. Ioe Quadratic Growth and Stability in Convex Programming Problems with Multiple Solutions , 1995 .

[23]  J. Burke,et al.  Weak sharp minima revisited Part I: basic theory , 2002 .

[24]  J. Penot Conditioning convex and nonconvex problems , 1996 .

[25]  Javier Peña,et al.  Conditioning of Convex Programs from a Primal-Dual Perspective , 2001, Math. Oper. Res..

[26]  S. M. Robinson Some continuity properties of polyhedral multifunctions , 1981 .

[27]  Enrico Miglierina,et al.  Well-Posedness and Scalarization in Vector Optimization , 2005 .

[28]  René Henrion,et al.  On the Calmness of a Class of Multifunctions , 2002, SIAM J. Optim..

[29]  B. Jiménez Strict Efficiency in Vector Optimization , 2002 .