An Approximation of the Error Backpropagation Algorithm in a Predictive Coding Network with Local Hebbian Synaptic Plasticity

To efficiently learn from feedback, cortical networks need to update synaptic weights on multiple levels of cortical hierarchy. An effective and well-known algorithm for computing such changes in synaptic weights is the error backpropagation algorithm. However, in this algorithm, the change in synaptic weights is a complex function of weights and activities of neurons not directly connected with the synapse being modified, whereas the changes in biological synapses are determined only by the activity of presynaptic and postsynaptic neurons. Several models have been proposed that approximate the backpropagation algorithm with local synaptic plasticity, but these models require complex external control over the network or relatively complex plasticity rules. Here we show that a network developed in the predictive coding framework can efficiently perform supervised learning fully autonomously, employing only simple local Hebbian plasticity. Furthermore, for certain parameters, the weight change in the predictive coding model converges to that of the backpropagation algorithm. This suggests that it is possible for cortical networks with simple Hebbian synaptic plasticity to implement efficient learning algorithms in which synapses in areas on multiple levels of hierarchy are modified to minimize the error on the output.

[1]  Xiaohui Xie,et al.  Learning Curves for Stochastic Gradient Descent in Linear Feedforward Networks , 2003, Neural Computation.

[2]  Christopher Summerfield,et al.  Encoding of Stimulus Probability in Macaque Inferior Temporal Cortex , 2016, Current Biology.

[3]  Michael I. Jordan,et al.  Advances in Neural Information Processing Systems 30 , 1995 .

[4]  Karl J. Friston,et al.  Attention, Uncertainty, and Free-Energy , 2010, Front. Hum. Neurosci..

[5]  Yoshua Bengio,et al.  Towards Biologically Plausible Deep Learning , 2015, ArXiv.

[6]  Rafal Bogacz,et al.  A tutorial on the free-energy framework for modelling perception and learning , 2017, Journal of mathematical psychology.

[7]  Randall C. O'Reilly,et al.  Biologically Plausible Error-Driven Learning Using Local Activation Differences: The Generalized Recirculation Algorithm , 1996, Neural Computation.

[8]  Colin J. Akerman,et al.  Random synaptic feedback weights support error backpropagation for deep learning , 2016, Nature Communications.

[9]  Geoffrey E. Hinton,et al.  A Learning Algorithm for Boltzmann Machines , 1985, Cogn. Sci..

[10]  K. P. Unnikrishnan,et al.  Alopex: A Correlation-Based Learning Algorithm for Feedforward and Recurrent Neural Networks , 1994, Neural Computation.

[11]  Nitish Srivastava,et al.  Multimodal learning with deep Boltzmann machines , 2012, J. Mach. Learn. Res..

[12]  Georg B. Keller,et al.  Mismatch Receptive Fields in Mouse Visual Cortex , 2016, Neuron.

[13]  Hassana K. Oyibo,et al.  Experience-dependent spatial expectations in mouse visual cortex , 2016, Nature Neuroscience.

[14]  James L. McClelland,et al.  Why there are complementary learning systems in the hippocampus and neocortex: insights from the successes and failures of connectionist models of learning and memory. , 1995, Psychological review.

[15]  Geoffrey E. Hinton,et al.  The Helmholtz Machine , 1995, Neural Computation.

[16]  U. Markowska-Kaczmar,et al.  Blinking Artefact Recognition in EEG Signal Using Artificial Neural Network , 1999 .

[17]  R. Desimone,et al.  The representation of stimulus familiarity in anterior inferior temporal cortex. , 1993, Journal of neurophysiology.

[18]  Lawrence D. Jackel,et al.  Backpropagation Applied to Handwritten Zip Code Recognition , 1989, Neural Computation.

[19]  Geoffrey E. Hinton,et al.  Learning representations by back-propagating errors , 1986, Nature.

[20]  Yoshua Bengio,et al.  How Auto-Encoders Could Provide Credit Assignment in Deep Networks via Target Propagation , 2014, ArXiv.

[21]  Karl J. Friston,et al.  Canonical Microcircuits for Predictive Coding , 2012, Neuron.

[22]  Yee Whye Teh,et al.  A Fast Learning Algorithm for Deep Belief Nets , 2006, Neural Computation.

[23]  Yves Chauvin,et al.  Backpropagation: theory, architectures, and applications , 1995 .

[24]  G. Buzsáki,et al.  Preconfigured, skewed distribution of firing rates in the hippocampus and entorhinal cortex. , 2013, Cell reports.

[25]  Yves Chauvin,et al.  Backpropagation: the basic theory , 1995 .

[26]  Rafal Bogacz,et al.  Learning in cortical networks through error back-propagation , 2015 .

[27]  Jennifer A. Mangels,et al.  Predictive Codes for Forthcoming Perception in the Frontal Cortex , 2006, Science.

[28]  Yoshua Bengio,et al.  Towards a Biologically Plausible Backprop , 2016, ArXiv.

[29]  A. Borst Seeing smells: imaging olfactory learning in bees , 1999, Nature Neuroscience.

[30]  Geoffrey E. Hinton,et al.  Learning Representations by Recirculation , 1987, NIPS.

[31]  Joachim M. Buhmann,et al.  Kickback Cuts Backprop's Red-Tape: Biologically Plausible Credit Assignment in Neural Networks , 2014, AAAI.

[32]  Jimmy Ba,et al.  Adam: A Method for Stochastic Optimization , 2014, ICLR.

[33]  Jim M. Monti,et al.  Neural repetition suppression reflects fulfilled perceptual expectations , 2008, Nature Neuroscience.

[34]  Geoffrey E. Hinton,et al.  ImageNet classification with deep convolutional neural networks , 2012, Commun. ACM.

[35]  Karl J. Friston,et al.  A theory of cortical responses , 2005, Philosophical Transactions of the Royal Society B: Biological Sciences.

[36]  Malcolm W. Brown,et al.  Recognition memory: What are the roles of the perirhinal cortex and hippocampus? , 2001, Nature Reviews Neuroscience.

[37]  Dana H. Ballard,et al.  Perceptual Learning From Cross-Modal Feedback , 1997 .

[38]  Tara N. Sainath,et al.  Deep Neural Networks for Acoustic Modeling in Speech Recognition: The Shared Views of Four Research Groups , 2012, IEEE Signal Processing Magazine.

[39]  Michael I. Jordan,et al.  A more biologically plausible learning rule for neural networks. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[40]  Aapo Hyvärinen,et al.  Regression using independent component analysis, and its connection to multi-layer perceptrons , 1999 .

[41]  Ronald J. Williams,et al.  Simple Statistical Gradient-Following Algorithms for Connectionist Reinforcement Learning , 2004, Machine Learning.

[42]  Eduardo Martin Moraud,et al.  Properties of Neurons in External Globus Pallidus Can Support Optimal Action Selection , 2016, PLoS Comput. Biol..

[43]  H. Seung,et al.  Learning in Spiking Neural Networks by Reinforcement of Stochastic Synaptic Transmission , 2003, Neuron.

[44]  Karl J. Friston Learning and inference in the brain , 2003, Neural Networks.

[45]  James L. McClelland,et al.  A distributed, developmental model of word recognition and naming. , 1989, Psychological review.

[46]  Yoshua Bengio,et al.  Early Inference in Energy-Based Models Approximates Back-Propagation , 2015, ArXiv.

[47]  Karl J. Friston,et al.  Action and behavior: a free-energy formulation , 2010, Biological Cybernetics.

[48]  Michael W. Spratling Reconciling Predictive Coding and Biased Competition Models of Cortical Function , 2008, Frontiers Comput. Neurosci..

[49]  Francis Crick,et al.  The recent excitement about neural networks , 1989, Nature.

[50]  Karl J. Friston The free-energy principle: a unified brain theory? , 2010, Nature Reviews Neuroscience.

[51]  R. O’Reilly,et al.  Computational Explorations in Cognitive Neuroscience , 2009 .

[52]  Robert L. Goldstone,et al.  Perceptual Learning from Cross-modal Feedback , 1997 .

[53]  James L. McClelland,et al.  Understanding normal and impaired word reading: computational principles in quasi-regular domains. , 1996, Psychological review.