Invasive non-typhoidal Salmonella (iNTS) aminoglycoside-resistant ST313 isolates feature unique pathogenic mechanisms to reach the bloodstream.

[1]  N. Hall,et al.  An accessible, efficient and global approach for the large-scale sequencing of bacterial genomes , 2021, Genome Biology.

[2]  C. G. Moreira,et al.  Salmonella Typhimurium ST313 isolated in Brazil revealed to be more invasive and inflammatory in murine colon compared to ST19 strains , 2021, Journal of Microbiology.

[3]  M. Allard,et al.  Phylogenetic relationship and genomic characterization of Salmonella Typhimurium strains isolated from swine in Brazil. , 2021, Infection, genetics and evolution : journal of molecular epidemiology and evolutionary genetics in infectious diseases.

[4]  C. G. Moreira,et al.  Genome profiling of fluoroquinolone-resistant uropathogenic Escherichia coli isolates from Brazil , 2021, Brazilian Journal of Microbiology.

[5]  R. Bennett,et al.  Stepwise evolution of Salmonella Typhimurium ST313 causing bloodstream infection in Africa , 2020, Nature Microbiology.

[6]  M. Allard,et al.  Insights about the epidemiology of Salmonella Typhimurium isolates from different sources in Brazil using comparative genomics , 2020, Gut Pathogens.

[7]  M. Allard,et al.  Phenotypic and genotypic characterization of Salmonella Typhimurium isolates from humans and foods in Brazil , 2020, PloS one.

[8]  Jan Jacobs,et al.  An African Salmonella Typhimurium ST313 sublineage with extensive drug-resistance and signatures of host adaptation , 2019, Nature Communications.

[9]  J. Hinton,et al.  The use of chicken and insect infection models to assess the virulence of African Salmonella Typhimurium ST313 , 2019, PLoS neglected tropical diseases.

[10]  W. Fang,et al.  Antibiotic Resistance in Salmonella Typhimurium Isolates Recovered From the Food Chain Through National Antimicrobial Resistance Monitoring System Between 1996 and 2016 , 2019, Front. Microbiol..

[11]  L. Hiley,et al.  Genetic characterisation of variants of the virulence plasmid, pSLT, in Salmonella enterica serovar Typhimurium provides evidence of a variety of evolutionary directions consistent with vertical rather than horizontal transmission , 2019, PloS one.

[12]  K. Hokamp,et al.  Adding function to the genome of African Salmonella Typhimurium ST313 strain D23580 , 2019, PLoS biology.

[13]  M. Allard,et al.  Phylogenetic and antimicrobial resistance gene analysis of Salmonella Typhimurium strains isolated in Brazil by whole genome sequencing , 2018, PloS one.

[14]  Nabil-Fareed Alikhan,et al.  A genomic overview of the population structure of Salmonella , 2018, PLoS genetics.

[15]  Yu-Wei Wu ezTree: an automated pipeline for identifying phylogenetic marker genes and inferring evolutionary relationships among uncultivated prokaryotic draft genomes , 2018, BMC Genomics.

[16]  P. Ashton,et al.  Public health surveillance in the UK revolutionises our understanding of the invasive Salmonella Typhimurium epidemic in Africa , 2017, Genome Medicine.

[17]  S. Baker,et al.  Current perspectives on invasive nontyphoidal Salmonella disease , 2017, Current opinion in infectious diseases.

[18]  M. Allard,et al.  Multilocus sequence typing of Salmonella Typhimurium reveals the presence of the highly invasive ST313 in Brazil. , 2017, Infection, genetics and evolution : journal of molecular epidemiology and evolutionary genetics in infectious diseases.

[19]  G. Franciosa,et al.  Galleria mellonella as an in vivo model for assessing the protective activity of probiotics against gastrointestinal bacterial pathogens , 2017, FEMS microbiology letters.

[20]  D. Bouley,et al.  Pseudogenization of the Secreted Effector Gene sseI Confers Rapid Systemic Dissemination of S. Typhimurium ST313 within Migratory Dendritic Cells. , 2017, Cell host & microbe.

[21]  C. MacLennan,et al.  A Systematic Review of the Incidence, Risk Factors and Case Fatality Rates of Invasive Nontyphoidal Salmonella (iNTS) Disease in Africa (1966 to 2014) , 2017, PLoS neglected tropical diseases.

[22]  Eun Ji Kim,et al.  Simulation-based comprehensive benchmarking of RNA-seq aligners , 2016, Nature Methods.

[23]  F. García-del Portillo,et al.  Stabilization of the Virulence Plasmid pSLT of Salmonella Typhimurium by Three Maintenance Systems and Its Evaluation by Using a New Stability Test , 2016, Front. Mol. Biosci..

[24]  F. Fang,et al.  Loss of Multicellular Behavior in Epidemic African Nontyphoidal Salmonella enterica Serovar Typhimurium ST313 Strain D23580 , 2016, mBio.

[25]  Pietro Liò,et al.  MeDuSa: a multi-draft based scaffolder , 2015, Bioinform..

[26]  K. Roland,et al.  Characterization of the Invasive, Multidrug Resistant Non-typhoidal Salmonella Strain D23580 in a Murine Model of Infection , 2015, PLoS neglected tropical diseases.

[27]  Yi Wang,et al.  OrthoVenn: a web server for genome wide comparison and annotation of orthologous clusters across multiple species , 2015, Nucleic Acids Res..

[28]  W. Huber,et al.  Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2 , 2014, Genome Biology.

[29]  Amy K. Cain,et al.  Drug Resistance in Salmonella enterica ser. Typhimurium Bloodstream Infection, Malawi , 2014, Emerging infectious diseases.

[30]  Paul Theodor Pyl,et al.  HTSeq—a Python framework to work with high-throughput sequencing data , 2014, bioRxiv.

[31]  F. Weill,et al.  Invasive Salmonella enterica Serotype Typhimurium Infections, Democratic Republic of the Congo, 2007–2011 , 2014, Emerging infectious diseases.

[32]  Björn Usadel,et al.  Trimmomatic: a flexible trimmer for Illumina sequence data , 2014, Bioinform..

[33]  Aaron E. Darling,et al.  A5-miseq: an updated pipeline to assemble microbial genomes from Illumina MiSeq data , 2014, Bioinform..

[34]  J. Bender,et al.  LPS Structure and PhoQ Activity Are Important for Salmonella Typhimurium Virulence in the Gallleria mellonella Infection Model , 2013, PloS one.

[35]  A. Fialho,et al.  The Virulence of Salmonella enterica Serovar Typhimurium in the Insect Model Galleria mellonella Is Impaired by Mutations in RNase E and RNase III , 2013, Applied and Environmental Microbiology.

[36]  J. Vila,et al.  Salmonella enterica Serovar Typhimurium Skills To Succeed in the Host: Virulence and Regulation , 2013, Clinical Microbiology Reviews.

[37]  C. Nielsen-Leroux,et al.  The insect Galleria mellonella as a powerful infection model to investigate bacterial pathogenesis. , 2012, Journal of visualized experiments : JoVE.

[38]  Alberto Policriti,et al.  GapFiller: a de novo assembly approach to fill the gap within paired reads , 2012, BMC Bioinformatics.

[39]  B. Finlay,et al.  Type III effector-mediated processes in Salmonella infection. , 2012, Future microbiology.

[40]  Zhemin Zhou,et al.  Multilocus Sequence Typing as a Replacement for Serotyping in Salmonella enterica , 2012, PLoS pathogens.

[41]  Siu-Ming Yiu,et al.  IDBA-UD: a de novo assembler for single-cell and metagenomic sequencing data with highly uneven depth , 2012, Bioinform..

[42]  Pimlapas Leekitcharoenphon,et al.  The transcriptional landscape and small RNAs of Salmonella enterica serovar Typhimurium , 2012, Proceedings of the National Academy of Sciences.

[43]  Steven L Salzberg,et al.  Fast gapped-read alignment with Bowtie 2 , 2012, Nature Methods.

[44]  R. Durbin,et al.  Efficient de novo assembly of large genomes using compressed data structures. , 2012, Genome research.

[45]  B. McCormick,et al.  Salmonella effector proteins and host-cell responses , 2011, Cellular and Molecular Life Sciences.

[46]  P. Warn,et al.  Pathogenicity of Aspergillus fumigatus mutants assessed in Galleria mellonella matches that in mice. , 2011, Medical mycology.

[47]  Walter Pirovano,et al.  BIOINFORMATICS APPLICATIONS , 2022 .

[48]  G. Mora,et al.  S. Typhimurium sseJ gene decreases the S. Typhi cytotoxicity toward cultured epithelial cells , 2010, BMC Microbiology.

[49]  Cristiano G. Moreira,et al.  QseC Mediates Salmonella enterica Serovar Typhimurium Virulence In Vitro and In Vivo , 2009, Infection and Immunity.

[50]  G. Dougan,et al.  Epidemic multiple drug resistant Salmonella Typhimurium causing invasive disease in sub-Saharan Africa have a distinct genotype. , 2009, Genome research.

[51]  V. Marmaras,et al.  Regulators and signalling in insect haemocyte immunity. , 2009, Cellular signalling.

[52]  N. Ledeboer,et al.  Salmonella enterica Serovar Typhimurium Requires the Lpf, Pef, and Tafi Fimbriae for Biofilm Formation on HEp-2 Tissue Culture Cells and Chicken Intestinal Epithelium , 2006, Infection and Immunity.

[53]  L. Piddock,et al.  The AcrAB–TolC efflux system of Salmonella enterica serovar Typhimurium plays a role in pathogenesis , 2006, Cellular microbiology.

[54]  H. Hradecká,et al.  Distribution and function of plasmids in Salmonella enterica. , 2006, Veterinary microbiology.

[55]  Samuel I. Miller,et al.  SseJ Deacylase Activity by Salmonella enterica Serovar Typhimurium Promotes Virulence in Mice , 2005, Infection and Immunity.

[56]  Samuel I. Miller,et al.  The Salmonella enterica Serovar Typhimurium Translocated Effectors SseJ and SifB Are Targeted to the Salmonella-Containing Vacuole , 2003, Infection and Immunity.

[57]  David Y. Thomas,et al.  Correlation between virulence of Candida albicans mutants in mice and Galleria mellonella larvae. , 2002, FEMS immunology and medical microbiology.

[58]  Javier Ruiz-Albert,et al.  Complementary activities of SseJ and SifA regulate dynamics of the Salmonella typhimurium vacuolar membrane , 2002, Molecular microbiology.

[59]  J. Shea,et al.  Influence of the Salmonella typhimuriumPathogenicity Island 2 Type III Secretion System on Bacterial Growth in the Mouse , 1999, Infection and Immunity.

[60]  J. Shea,et al.  Genes encoding putative effector proteins of the type III secretion system of Salmonella pathogenicity island 2 are required for bacterial virulence and proliferation in macrophages , 1998, Molecular microbiology.

[61]  S Falkow,et al.  Macrophage‐dependent induction of the Salmonella pathogenicity island 2 type III secretion system and its role in intracellular survival , 1998, Molecular microbiology.

[62]  S. Falkow,et al.  Functional analysis of ssaJ and the ssaK/U operon, 13 genes encoding components of the type III secretion apparatus of Salmonella Pathogenicity Island 2 , 1997, Molecular microbiology.

[63]  H. Ochman,et al.  Identification of a pathogenicity island required for Salmonella survival in host cells. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[64]  J. Shea,et al.  Identification of a virulence locus encoding a second type III secretion system in Salmonella typhimurium. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[65]  F. Heffron,et al.  Identification and sequence analysis of lpfABCDE, a putative fimbrial operon of Salmonella typhimurium , 1995, Journal of bacteriology.

[66]  H. Ochman,et al.  Cognate gene clusters govern invasion of host epithelial cells by Salmonella typhimurium and Shigella flexneri. , 1993, The EMBO journal.

[67]  P. Gulig,et al.  The Salmonella typhimurium virulence plasmid increases the growth rate of salmonellae in mice , 1993, Infection and immunity.

[68]  J. Galán,et al.  Cloning and molecular characterization of genes whose products allow Salmonella typhimurium to penetrate tissue culture cells. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[69]  D. Brown,et al.  Recognition of the cryptic plasmid, pSLT, by restriction fingerprinting and a study of its incidence in Scottish salmonella isolates , 1986, Journal of Hygiene.

[70]  J. Munita,et al.  Mechanisms of Antibiotic Resistance , 2016, Microbiology spectrum.

[71]  Samuel I. Miller,et al.  Salmonellae interplay with host cells , 2008, Nature Reviews Microbiology.

[72]  G. Dougan,et al.  Advance Access Publication Date: 24 December 2014 Short Communication Non-typhoidal Salmonella Typhimurium St313 Isolates That Cause Bacteremia in Humans Stimulate Less Inflammasome Activation than St19 Isolates Associated with Gastroenteritis , 2022 .