Hierarchical Formal Verification Combining Algebraic Transformation with PPRM Expansion and Its Application to Masked Cryptographic Processors

[1]  Toshiyuki Yamane,et al.  Towards Efficient Verification of Arithmetic Algorithms over Galois Fields GF(2m) , 2001, CAV.

[2]  Akashi Satoh,et al.  A Compact Rijndael Hardware Architecture with S-Box Optimization , 2001, ASIACRYPT.

[3]  Vincent Rijmen,et al.  A Side-Channel Analysis Resistant Description of the AES S-Box , 2005, FSE.

[4]  Debdeep Mukhopadhyay,et al.  Hierarchical Verification of Galois Field Circuits , 2007, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[5]  Jean-Max Dutertre,et al.  A side-channel and fault-attack resistant AES circuit working on duplicated complemented values , 2011, 2011 IEEE International Solid-State Circuits Conference.

[6]  Yasuyuki Nogami,et al.  Mixed Bases for Efficient Inversion in F((22)2)2 and Conversion Matrices of SubBytes of AES , 2011, IEICE Trans. Fundam. Electron. Commun. Comput. Sci..

[7]  Priyank Kalla,et al.  Verification of composite Galois field multipliers over GF ((2m)n) using computer algebra techniques , 2011, 2011 IEEE International High Level Design Validation and Test Workshop.

[8]  Markus Wedler,et al.  STABLE: A new QF-BV SMT solver for hard verification problems combining Boolean reasoning with computer algebra , 2011, 2011 Design, Automation & Test in Europe.

[9]  Priyank Kalla,et al.  Formal Verification of Galois Field Multipliers Using Computer Algebra Techniques , 2012, 2012 25th International Conference on VLSI Design.

[10]  Priyank Kalla,et al.  Efficient Gröbner basis reductions for formal verification of galois field multipliers , 2012, 2012 Design, Automation & Test in Europe Conference & Exhibition (DATE).

[11]  Takafumi Aoki,et al.  A Formal Approach to Designing Cryptographic Processors Based on $GF(2^m)$ Arithmetic Circuits , 2012, IEEE Transactions on Information Forensics and Security.

[12]  Takafumi Aoki,et al.  Toward Formal Design of Practical Cryptographic Hardware Based on Galois Field Arithmetic , 2014, IEEE Transactions on Computers.