Femtosecond studies of electron photodetachment of simple ions in liquid water: Solvation and geminate recombination dynamics

Femtosecond studies of electron photodetachment in aqueous solutions of NaCl and NaOH have been performed. The decays observed in the solvated electron absorption signal we believe to be the first direct observation of geminate electron–atom recombination. The solvation dynamics of the electron originating from a Cl− ion are slower, 500 fs, than the electron originating from a neutral water molecule, 350 fs. The recombination and solvation dynamics strongly suggest that short‐range molecular effects are important.

[1]  U. Landman,et al.  Relaxation dynamics following transition of solvated electrons , 1989 .

[2]  J. Hynes,et al.  Polar solvent contributions to activation parameters for model ionic reactions , 1989 .

[3]  F. H. Long,et al.  Femtosecond studies of electron-cation geminate recombination in water , 1989 .

[4]  T. Goulet,et al.  Thermalization distances and times for subexcitation electrons in solid water , 1988 .

[5]  Alan E. Johnson,et al.  Femtosecond microscopic solvation dynamics of aqueous solutions , 1988 .

[6]  M. Maroncelli,et al.  Computer simulation of the dynamics of aqueous solvation , 1988 .

[7]  J. Klafter,et al.  Solvation dynamics in polar liquids , 1988 .

[8]  A. Nichols,et al.  Polar solvent relaxation: The mean spherical approximation approach , 1988 .

[9]  K. Eisenthal,et al.  Femtosecond study of geminate electron–hole recombination in neat alkanes , 1988 .

[10]  J. Simon,et al.  Molecular aspects of nonequilibrium solvation: a simulation of dipole relaxation , 1988 .

[11]  B. Berne,et al.  Behavior of the hydrated electron at different temperatures: structure and absorption spectrum , 1988 .

[12]  P. Rossky,et al.  The hydrated electron: quantum simulation of structure, spectroscopy, and dynamics , 1988 .

[13]  S. Mukamel,et al.  Molecular theory of solvation and dielectric response in polar fluids , 1987 .

[14]  D. Kivelson,et al.  Theory of time‐dependent polarization about an ion in an isotropic liquid , 1987 .

[15]  Farhataziz,et al.  Radiation Chemistry: Principles and Applications , 1987 .

[16]  P. Wolynes Linearized microscopic theories of nonequilibrium solvation , 1987 .

[17]  Martin,et al.  Excess electrons in liquid water: First evidence of a prehydrated state with femtosecond lifetime. , 1987, Physical review letters.

[18]  G. W. Robinson,et al.  Molecular aspects of ionic hydration reactions , 1986 .

[19]  R. Impey,et al.  Study of electron solvation in polar solvents using path integral calculations , 1986 .

[20]  R. Marcus,et al.  Dielectric relaxation and intramolecular electron transfers , 1986 .

[21]  Aneesur Rahman,et al.  Hydrated electron revisited via the feynman path integral route , 1986 .

[22]  J. Hynes,et al.  Time-dependent fluorescence solvent shifts, dielectric friction, and nonequilibrium solvation in polar solvents , 1985 .

[23]  Graham R. Fleming,et al.  Theory of the time development of the Stokes shift in polar media , 1984 .

[24]  P. Wolynes,et al.  Smoluchowski–Vlasov theory of charge solvation dynamics , 1983 .

[25]  J. Wiesenfeld,et al.  Dynamics of electron solvation in liquid water , 1980 .

[26]  L. Kevan Current problems in the localization and solvation of excess electrons in glasses , 1980 .

[27]  Scott H. Northrup,et al.  Short range caging effects for reactions in solution. I. Reaction rate constants and short range caging picture , 1979 .

[28]  J. Hunt,et al.  Solvation time of the electron in polar liquids. Water and alcohols , 1975 .

[29]  B. Berne A self‐consistent theory of rotational diffusion , 1975 .

[30]  A. K. Pikaev The Solvated Electron in Radiation Chemistry , 1971 .

[31]  Michael J. Blandamer,et al.  Theory and applications of charge-transfer-to-solvent spectra , 1970 .

[32]  H. Schwarz Applications of the spur diffusion model to the radiation chemistry of aqueous solutions , 1969 .

[33]  J. L. Dye The Solvated Electron , 1967 .

[34]  F. Dainton,et al.  Primary processes in the photolysis of the iodide ion in aqueous solution , 1965, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[35]  J. Rabani,et al.  FORMATION OF THE HYDRATED ELECTRON IN THE FLASH PHOTOLYSIS OF AQUEOUS SOLUTIONS1 , 1963 .

[36]  J. Jortner,et al.  The effect of nitrous oxide and the nature of intermediates in the photochemistry of the iodide ion in aqueous solution , 1962 .

[37]  George E. Kimball,et al.  Diffusion-controlled reaction rates , 1949 .