Two-way interconversion of millimeter-wave and optical fields in Rydberg gases

We show that cold Rydberg gases enable an efficient six-wave mixing process where terahertz or microwave fields are coherently converted into optical fields and vice versa. This process is made possible by the long lifetime of Rydberg states, the strong coupling of millimeter waves to Rydberg transitions and by a quantum interference effect related to electromagnetically induced transparency (EIT). Our frequency conversion scheme applies to a broad spectrum of millimeter waves due to the abundance of transitions within the Rydberg manifold, and we discuss two possible implementations based on focussed terahertz beams and millimeter wave fields confined by a waveguide, respectively. We analyse a realistic example for the interconversion of terahertz and optical fields in rubidium atoms and find that the conversion efficiency can in principle exceed 90\%.

[1]  S. Schmid,et al.  Optical detection of radio waves through a nanomechanical transducer , 2013, Nature.

[2]  J. Pritchard,et al.  Nonlinear optics using cold Rydberg atoms , 2012, 1205.4890.

[3]  Alexey V. Gorshkov,et al.  Quantum nonlinear optics with single photons enabled by strongly interacting atoms , 2012, Nature.

[4]  Dennis W. Prather,et al.  Optical up-conversion enables capture of millimeter-wave video with an IR camera , 2012 .

[5]  Ying-Cheng Chen,et al.  Cold atomic media with ultrahigh optical depths , 2014 .

[6]  M. Manjappa,et al.  Lensing effect of electromagnetically induced transparency involving a Rydberg state , 2015, 1511.02480.

[7]  T. Pfau,et al.  Motion-induced signal revival in pulsed Rydberg four-wave mixing beyond the frozen-gas limit , 2014, 1410.0897.

[8]  D. Jaksch,et al.  Dissipative quantum light field engineering , 2011, 1112.3885.

[9]  Aurèle J. L. Adam,et al.  Review of Near-Field Terahertz Measurement Methods and Their Applications , 2011 .

[10]  B. Shore,et al.  Dark-state polaritons for multicomponent and stationary light fields , 2007, 0712.0060.

[11]  Andrew G. Glen,et al.  APPL , 2001 .

[12]  Christopher L. Holloway,et al.  Millimeter Wave Detection via Autler-Townes Splitting in Rubidium Rydberg Atoms , 2014, 1406.2936.

[13]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[14]  M. Saffman,et al.  Hybrid atom-photon quantum gate in a superconducting microwave resonator , 2013, 1310.3910.

[15]  A S Sørensen,et al.  Coupling nitrogen-vacancy centers in diamond to superconducting flux qubits. , 2010, Physical review letters.

[16]  John M. Martinis,et al.  Logic gates at the surface code threshold: Superconducting qubits poised for fault-tolerant quantum computing , 2014 .

[17]  Zach DeVito,et al.  Opt , 2017 .

[18]  M. Kirchner,et al.  Generation of ultrastable microwaves via optical frequency division , 2011, 1101.3616.

[19]  Yanpeng Zhang,et al.  Temporal and Spatial Interference between Four-Wave Mixing and Six-Wave Mixing Channels. , 2009, Physical review letters.

[20]  M. Fleischhauer,et al.  Interfacing microwave qubits and optical photons via spin ensembles , 2015, 1501.05860.

[21]  Giovanna Morigi,et al.  Interfacing superconducting qubits and telecom photons via a rare-earth-doped crystal. , 2014, Physical review letters.

[22]  K. Singer,et al.  Long-range interactions between alkali Rydberg atom pairs correlated to the ns–ns, np–np and nd–nd asymptotes , 2005 .

[23]  C. Monroe,et al.  Large-scale modular quantum-computer architecture with atomic memory and photonic interconnects , 2012, 1208.0391.

[24]  D. Steck Rubidium 87 D Line Data , 2003 .

[25]  James P. Shaffer,et al.  Microwave electrometry with Rydberg atoms in a vapour cell using bright atomic resonances , 2012, Nature Physics.

[26]  D. B. Tretyakov,et al.  Quasiclassical calculations of blackbody-radiation-induced depopulation rates and effective lifetimes of Rydberg nS , nP , and nD alkali-metal atoms with n≤80 , 2009 .

[27]  C. cohen-tannoudji,et al.  Annual review of cold atoms and molecules , 2013 .

[28]  G. Kurizki,et al.  Optimizing inhomogeneous spin ensembles for quantum memory , 2012, 1203.6305.

[29]  K. Bongs,et al.  Efficient guiding of cold atoms through a photonic band gap fiber , 2010, 1010.0101.

[30]  Pieter Kok,et al.  Efficient high-fidelity quantum computation using matter qubits and linear optics , 2005 .

[31]  M. Lukin,et al.  Quantum transport of strongly interacting photons in a one-dimensional nonlinear waveguide , 2009, 0911.4766.

[32]  Thomas Halfmann,et al.  One-dimensional ultracold medium of extreme optical depth. , 2014, Optics letters.

[33]  J. Marangos,et al.  Electromagnetically induced transparency : Optics in coherent media , 2005 .

[34]  Yiqi Zhang,et al.  Rydberg six-wave mixing process , 2015 .

[35]  D. Petrosyan,et al.  Spatial correlations of Rydberg excitations in optically driven atomic ensembles , 2012, 1212.2423.

[36]  Keyu Xia,et al.  An opto-magneto-mechanical quantum interface between distant superconducting qubits , 2014, Scientific reports.

[37]  M. Saffman,et al.  Consequences of Zeeman Degeneracy for van der Waals Blockade between Rydberg Atoms , 2007, 0712.3438.

[38]  J. Pritchard,et al.  Electromagnetically induced transparency of an interacting cold Rydberg ensemble , 2008, 0805.4327.

[39]  M. Fleischhauer,et al.  Quantum memory for photons: Dark-state polaritons , 2002 .

[40]  J. Evers,et al.  Semianalytical model for nonlinear absorption in strongly interacting Rydberg gases , 2014, 1402.4674.

[41]  G. Kurizki,et al.  Reversible state transfer between superconducting qubits and atomic ensembles , 2009, 0902.0881.

[42]  An ultra-high optical depth cold atomic ensemble for quantum memories , 2013 .

[43]  T. Gallagher Rydberg Atoms: Frontmatter , 1994 .

[44]  Yuefeng Ji,et al.  Optical frequency comb based multi-band microwave frequency conversion for satellite applications. , 2014, Optics express.

[45]  R. W. Andrews,et al.  Bidirectional and efficient conversion between microwave and optical light , 2013, Nature Physics.

[46]  Yu-Hui Chen,et al.  Magneto-optic modulator with unit quantum efficiency. , 2014, Physical review letters.

[47]  Zhaoyang Zhang,et al.  Eight-wave mixing process in a Rydberg-dressing atomic ensemble. , 2015, Optics express.

[48]  Simon J. Devitt,et al.  Photonic Architecture for Scalable Quantum Information Processing in Diamond , 2013, 1309.4277.

[49]  S. Girvin,et al.  Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics , 2004, Nature.

[50]  John J. L. Morton,et al.  Quantum information: Spin memories in for the long haul , 2015, Nature.

[51]  Dexter Kozen,et al.  New , 2020, MFPS.

[52]  M. Saffman,et al.  Magic-wavelength optical traps for Rydberg atoms , 2011, 1106.2463.

[53]  J. Shaffer,et al.  Observation of ultralong-range Rydberg molecules , 2009, Nature.

[54]  Ikmo Park,et al.  Terahertz pulse propagation in plastic photonic crystal fibers , 2002, IMS 2002.

[55]  Wai Lam Chan,et al.  Imaging with terahertz radiation , 2007 .

[56]  S. Chandrasekhar Stochastic problems in Physics and Astronomy , 1943 .

[57]  P. Gould,et al.  Superradiance in ultracold Rydberg gases , 2005, quant-ph/0508135.

[58]  R. Barends,et al.  Superconducting quantum circuits at the surface code threshold for fault tolerance , 2014, Nature.

[59]  S. L. Rolston,et al.  Atomic interface between microwave and optical photons , 2011, 1110.3537.

[60]  M. Hartmann,et al.  Master equation approach for interacting slow- and stationary-light polaritons , 2010, 1005.4865.

[61]  J. Shaffer,et al.  Quantum Assisted Electrometry using Bright Atomic Resonances , 2012, 1205.4461.