Efficient Detection of Patterns in 2D Trajectories of Moving Points

Moving point object data can be analyzed through the discovery of patterns in trajectories. We consider the computational efficiency of detecting four such spatio-temporal patterns, namely flock, leadership, convergence, and encounter, as defined by Laube et al., Finding REMO—detecting relative motion patterns in geospatial lifelines, 201–214, (2004). These patterns are large enough subgroups of the moving point objects that exhibit similar movement in the sense of direction, heading for the same location, and/or proximity. By the use of techniques from computational geometry, including approximation algorithms, we improve the running time bounds of existing algorithms to detect these patterns.

[1]  Leonidas J. Guibas,et al.  The Exact Fitting Problem in Higher Dimensions , 1996, Comput. Geom..

[2]  Mark H. Overmars,et al.  The Design of Dynamic Data Structures , 1987, Lecture Notes in Computer Science.

[3]  Leonidas J. Guibas,et al.  The exact fitting problem for points , 1991 .

[4]  Timothy M. Chan Approximate Nearest Neighbor Queries Revisited , 1997, SCG '97.

[5]  Hideo Saito,et al.  Tracking Soccer Player Using Multiple Views , 2002, MVA.

[6]  John F. Roddick,et al.  An Updated Bibliography of Temporal, Spatial, and Spatio-temporal Data Mining Research , 2000, TSDM.

[7]  Marc J. van Kreveld,et al.  Finding REMO - Detecting Relative Motion Patterns in Geospatial Lifelines , 2004, SDH.

[8]  Martin Charlton,et al.  A Mark 1 Geographical Analysis Machine for the automated analysis of point data sets , 1987, Int. J. Geogr. Inf. Sci..

[9]  Dimitrios Gunopulos,et al.  Discovering similar multidimensional trajectories , 2002, Proceedings 18th International Conference on Data Engineering.

[10]  Jon Louis Bentley,et al.  Decomposable Searching Problems , 1979, Inf. Process. Lett..

[11]  Andrew J. Bulpitt,et al.  Learning spatio-temporal patterns for predicting object behaviour , 2000, Image Vis. Comput..

[12]  David O'Sullivan,et al.  Geographic Information Analysis , 2002 .

[13]  Sunil Arya,et al.  An optimal algorithm for approximate nearest neighbor searching fixed dimensions , 1998, JACM.

[14]  Hanan Samet,et al.  The Design and Analysis of Spatial Data Structures , 1989 .

[15]  Ketan Mulmuley,et al.  Computational geometry - an introduction through randomized algorithms , 1993 .

[16]  David M. Mark,et al.  Measuring similarity between geospatial lifelines in studies of environmental health , 2005, J. Geogr. Syst..

[17]  Abraham Silberschatz,et al.  What Makes Patterns Interesting in Knowledge Discovery Systems , 1996, IEEE Trans. Knowl. Data Eng..

[18]  Gábor Fejes Tóth,et al.  Packing and Covering , 2004, Handbook of Discrete and Computational Geometry, 2nd Ed..

[19]  Hanan Samet,et al.  Hierarchical Spatial Data Structures , 1989, SSD.

[20]  Jae-Woo Chang,et al.  A New Similar Trajectory Retrieval Scheme Using k-Warping Distance Algorithm for Moving Objects , 2003, WAIM.

[21]  Boris Aronov,et al.  On approximating the depth and related problems , 2005, SODA '05.

[22]  Margrit Betke,et al.  Motion Mining: Discovering Spatio-Temporal Patterns in Databases of Human Motion , 2001, DMKD.

[23]  Frank Swiaczny,et al.  Time-integrative geographic information systems , 2001 .

[24]  Jeff Erickson New Lower Bounds for Convex Hull Problems in Odd Dimensions , 1999, SIAM J. Comput..

[25]  Bernard Chazelle,et al.  Cutting hyperplanes for divide-and-conquer , 1993, Discret. Comput. Geom..

[26]  John F. Roddick,et al.  Geographic Data Mining and Knowledge Discovery , 2001 .

[27]  Patrick Laube,et al.  Analyzing Relative Motion within Groups of Trackable Moving Point Objects , 2002, GIScience.

[28]  Clifford Stein,et al.  Introduction to Algorithms, 2nd edition. , 2001 .

[29]  Petra Perner,et al.  Data Mining - Concepts and Techniques , 2002, Künstliche Intell..

[30]  Jiawei Han,et al.  Geographic Data Mining and Knowledge Discovery , 2001 .