Noncommutative Christoffel-Darboux kernels

We introduce from an analytic perspective Christoffel-Darboux kernels associated to bounded, tracial noncommutative distributions. We show that properly normalized traces, respectively norms, of evaluations of such kernels on finite dimensional matrices yield classical plurisubharmonic functions as the degree tends to infinity, and show that they are comparable to certain noncommutative versions of the Siciak extremal function. We prove estimates for Siciak functions associated to free products of distributions, and use the classical theory of plurisubharmonic functions in order to propose a notion of support for noncommutative distributions. We conclude with some conjectures and numerical experiments.

[1]  V. Paulsen Completely Bounded Maps and Operator Algebras: Contents , 2003 .

[2]  Jasper V. Stokman,et al.  Orthogonal Polynomials of Several Variables , 2001, J. Approx. Theory.

[3]  Jean B. Lasserre,et al.  Global Optimization with Polynomials and the Problem of Moments , 2000, SIAM J. Optim..

[4]  G. Fitzgerald,et al.  'I. , 2019, Australian journal of primary health.

[5]  J. Lasserre,et al.  Tractable semi-algebraic approximation using Christoffel-Darboux kernel , 2019, 1904.01833.

[6]  Gaston H. Gonnet,et al.  Advances in Computational Mathematics , 1996 .

[7]  A. Acín,et al.  A convergent hierarchy of semidefinite programs characterizing the set of quantum correlations , 2008, 0803.4290.

[8]  De Leone,et al.  Computational Optimization and Applications Volume 34, Number 2, June 2006 , 2006 .

[9]  Jstor,et al.  Proceedings of the American Mathematical Society , 1950 .

[10]  Thomas Bloom,et al.  Bernstein-Markov: a survey , 2015, 1512.00739.

[11]  Igor Klep,et al.  Constrained Polynomial Optimization Problems with Noncommuting Variables , 2012, SIAM J. Optim..

[12]  A. Zeriahi,et al.  Degenerate Complex Monge-Ampere Equations , 2017 .

[13]  Jie Wang,et al.  Exploiting term sparsity in noncommutative polynomial optimization , 2020, Computational Optimization and Applications.

[14]  Michael J. Todd,et al.  Mathematical programming , 2004, Handbook of Discrete and Computational Geometry, 2nd Ed..

[15]  Barry Simon,et al.  The Christoffel-Darboux Kernel , 2008, 0806.1528.

[16]  D. Henrion,et al.  Semidefinite Approximations of Invariant Measures for Polynomial Systems , 2018, 1807.00754.

[17]  Scott McCullough Factorization of operator-valued polynomials in several non-commuting variables☆ , 2001 .

[18]  D. Voiculescu Symmetries of some reduced free product C*-algebras , 1985 .

[19]  J. Helton “Positive” noncommutative polynomials are sums of squares , 2002 .

[20]  Edouard Pauwels,et al.  The empirical Christoffel function with applications in data analysis , 2017, Adv. Comput. Math..

[21]  R. Curto,et al.  Flat Extensions of Positive Moment Matrices: Recursively Generated Relations , 1998 .

[22]  Stefano Pironio,et al.  Convergent Relaxations of Polynomial Optimization Problems with Noncommuting Variables , 2009, SIAM J. Optim..

[23]  Jean B. Lasserre,et al.  Sorting out typicality with the inverse moment matrix SOS polynomial , 2016, NIPS.

[24]  M. Laurent Sums of Squares, Moment Matrices and Optimization Over Polynomials , 2009 .

[25]  J. Lasserre,et al.  Handbook on Semidefinite, Conic and Polynomial Optimization , 2012 .

[26]  Anna Dorota Krystek,et al.  Noncommutative harmonic analysis with applications to probability , 2007 .

[27]  이기수,et al.  II. , 1992 .

[28]  Takuya Kon-no,et al.  Transactions of the American Mathematical Society , 1996 .

[29]  D. Voiculescu The coalgebra of the free difference quotient and free probability , 2000 .

[30]  Arieh Iserles,et al.  On the Foundations of Computational Mathematics , 2001 .

[31]  J. Ball,et al.  Noncommutative reproducing kernel Hilbert spaces , 2016, 1602.00760.

[32]  J. Lasserre,et al.  Detecting global optimality and extracting solutions in GloptiPoly , 2003 .

[33]  Igor Klep,et al.  The tracial moment problem and trace-optimization of polynomials , 2013, Math. Program..

[34]  E. Saff,et al.  Perturbations of Christoffel–Darboux Kernels: Detection of Outliers , 2018, Found. Comput. Math..

[35]  Paul Neval,et al.  Ge´za Freud, orthogonal polynomials and Christoffel functions. A case study , 1986 .

[36]  A. Timan Theory of Approximation of Functions of a Real Variable , 1994 .

[37]  B. M. Fulk MATH , 1992 .

[38]  D. Voiculescu The analogues of entropy and of Fisher's information measure in free probability theory, I , 1993 .

[39]  Jean-Philippe Vert,et al.  Relating Leverage Scores and Density using Regularized Christoffel Functions , 2018, NeurIPS.

[40]  Attila Máté,et al.  Szegö’s extremum problem on the unit circle , 1991 .

[41]  Thomas Bloom Orthogonal polynomials in C^n , 1997 .

[42]  Gilles Pisier,et al.  Introduction to Operator Space Theory , 2003 .

[43]  P. Cochat,et al.  Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.

[44]  Igor Klep,et al.  Optimization Over Trace Polynomials , 2020, Annales Henri Poincaré.

[45]  Dmitry S. Kaliuzhnyi-Verbovetskyi,et al.  Foundations of Free Noncommutative Function Theory , 2012, 1212.6345.

[46]  Orthogonal polynomials with a resolvent-type generating function , 2004, math/0410482.

[47]  Edouard Pauwels,et al.  Data Analysis from Empirical Moments and the Christoffel Function , 2018, Foundations of Computational Mathematics.

[48]  M. Anshelevich MONIC NON-COMMUTATIVE ORTHOGONAL POLYNOMIALS , 2007, math/0702157.

[49]  竹崎 正道 Theory of operator algebras , 2002 .

[50]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[51]  Constance de Koning,et al.  Editors , 2003, Annals of Emergency Medicine.

[52]  Igor Klep,et al.  Sparse noncommutative polynomial optimization , 2019 .

[53]  D. Voiculescu The analogues of entropy and of Fisher's information measure in free probability theory V. Noncommutative Hilbert Transforms , 1998 .

[54]  Michael I. Jordan,et al.  Advances in Neural Information Processing Systems 30 , 1995 .

[55]  C. Tracy,et al.  Introduction to Random Matrices , 1992, hep-th/9210073.