Full 3D Conjugate Heat Transfer Simulation and Heat Transfer Coefficient Prediction for the Effusion-Cooled Wall of a Gas Turbine Combustor
暂无分享,去创建一个
Numerical predictions of conjugate heat transfer on an effusion cooled flat plate were performed and compared to detailed experimental data. The commercial package CFX® is used as flow solver. The effusion holes in the referenced experiment had an inclination angle of 17 degrees and were distributed in a staggered array of 7 rows. The geometry and boundary conditions in the experiments were derived from modern gas turbine combustors. The computational domain contains a plenum chamber for coolant supply, a solid wall and the main flow duct. Conjugate heat transfer conditions are applied in order to couple the heat fluxes between the fluid region and the solid wall. The fluid domain contains 2.4 million nodes, the solid domain 300,000 nodes. Turbulence modeling is provided by the SST turbulence model which allows the resolution of the laminar sublayer without wall functions. The numerical predictions of velocity and temperature distributions at certain locations show significant differences to the experimental data in velocity and temperature profiles. It is assumed that this behavior is due to inappropriate modeling of turbulence especially in the effusion hole. Nonetheless, the numerically predicted heat transfer coefficients are in good agreement with the experimental data at low blowing ratios.© 2008 ASME