A Radius Adaptive K-Best Decoder With Early Termination: Algorithm and VLSI Architecture

This paper presents a novel algorithm and architecture for K-Best decoding that combines the benefits of radius shrinking commonly associated with sphere decoding and the architectural benefits associated with K-Best decoding approaches. The proposed algorithm requires much smaller K and possesses the advantages of branch pruning and adaptively updated pruning threshold while still achieving near-optimum performance. The algorithm examines a much smaller subset of points as compared to the K-Best decoder. The VLSI architecture of the decoder is based on a pipelined sorter-free scheme. The proposed K-Best decoder is designed to support a 4 × 4 64-QAM system and is synthesized with 65-nm technology at 158-MHz clock frequency and 1-V supply. The synthesized decoder can support a throughput of 285.8 Mb/s at 25-dB signal-to-noise ratio with an area of 210 kGE at 12.8-mW power consumption.

[1]  Tong Zhang,et al.  Relaxed $K$ -Best MIMO Signal Detector Design and VLSI Implementation , 2007, IEEE Transactions on Very Large Scale Integration (VLSI) Systems.

[2]  Keshab K. Parhi,et al.  Probabilistic Spherical Detection and VLSI Implementation for Multiple-Antenna Systems , 2009, IEEE Transactions on Circuits and Systems I: Regular Papers.

[3]  Ender Ayanoglu,et al.  Reduced complexity sphere decoding via a reordered lattice representation , 2009, IEEE Transactions on Communications.

[4]  Giuseppe Caire,et al.  On maximum-likelihood detection and the search for the closest lattice point , 2003, IEEE Trans. Inf. Theory.

[5]  Ahmed M. Eltawil,et al.  Architectural Optimizations for Low-Power $K$ -Best MIMO Decoders , 2009, IEEE Transactions on Vehicular Technology.

[6]  A. Burg,et al.  VLSI implementation of MIMO detection using the sphere decoding algorithm , 2005, IEEE Journal of Solid-State Circuits.

[7]  Jing Ma,et al.  System Architecture and Implementation of MIMO Sphere Decoders on FPGA , 2008, IEEE Transactions on Very Large Scale Integration (VLSI) Systems.

[8]  Ahmed M. Eltawil,et al.  Design and Implementation of a Sort-Free K-Best Sphere Decoder , 2010, IEEE Transactions on Very Large Scale Integration (VLSI) Systems.

[9]  Poras T. Balsara,et al.  VLSI Architecture for Matrix Inversion using Modified Gram-Schmidt based QR Decomposition , 2007, 20th International Conference on VLSI Design held jointly with 6th International Conference on Embedded Systems (VLSID'07).

[10]  David Gesbert,et al.  From theory to practice: an overview of MIMO space-time coded wireless systems , 2003, IEEE J. Sel. Areas Commun..

[11]  U. Fincke,et al.  Improved methods for calculating vectors of short length in a lattice , 1985 .

[12]  Andreas Peter Burg,et al.  K-best MIMO detection VLSI architectures achieving up to 424 Mbps , 2006, 2006 IEEE International Symposium on Circuits and Systems.

[13]  Babak Hassibi,et al.  On the sphere-decoding algorithm I. Expected complexity , 2005, IEEE Transactions on Signal Processing.

[14]  Babak Hassibi,et al.  An efficient square-root algorithm for BLAST , 2000, 2000 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.00CH37100).

[15]  Helmut Bölcskei,et al.  Soft-output sphere decoding: algorithms and VLSI implementation , 2008, IEEE Journal on Selected Areas in Communications.

[16]  Wai Ho Mow,et al.  A VLSI architecture of a K-best lattice decoding algorithm for MIMO channels , 2002, 2002 IEEE International Symposium on Circuits and Systems. Proceedings (Cat. No.02CH37353).

[17]  Andreas Peter Burg,et al.  VLSI Implementation of a High-Speed Iterative Sorted MMSE QR Decomposition , 2007, 2007 IEEE International Symposium on Circuits and Systems.

[18]  Wolfgang Fichtner,et al.  Hardware-efficient steering matrix computation architecture for MIMO communication systems , 2008, 2008 IEEE International Symposium on Circuits and Systems.

[19]  K. Kammeyer,et al.  Efficient algorithm for decoding layered space-time codes , 2001 .

[20]  Emanuele Viterbo,et al.  A universal lattice code decoder for fading channels , 1999, IEEE Trans. Inf. Theory.

[21]  Zhan Guo,et al.  Algorithm and implementation of the K-best sphere decoding for MIMO detection , 2006, IEEE Journal on Selected Areas in Communications.

[22]  Stephan ten Brink,et al.  Achieving near-capacity on a multiple-antenna channel , 2003, IEEE Trans. Commun..

[23]  Dejan Markovic,et al.  A Flexible DSP Architecture for MIMO Sphere Decoding , 2009, IEEE Transactions on Circuits and Systems I: Regular Papers.

[24]  L. G. Barbero,et al.  A Fixed-Complexity MIMO Detector Based on the Complex Sphere Decoder , 2006, 2006 IEEE 7th Workshop on Signal Processing Advances in Wireless Communications.

[25]  Andreas Peter Burg,et al.  Reduced-complexity mimo detector with close-to ml error rate performance , 2007, GLSVLSI '07.

[26]  Gerard J. Foschini,et al.  Layered space-time architecture for wireless communication in a fading environment when using multi-element antennas , 1996, Bell Labs Technical Journal.

[27]  M. O. Damen,et al.  A unified framework for tree search decoding: rediscovering the sequential decoder , 2005, SPAWC 2005.

[28]  Claus-Peter Schnorr,et al.  Lattice Basis Reduction: Improved Practical Algorithms and Solving Subset Sum Problems , 1991, FCT.

[29]  Tong Zhang,et al.  Low power soft-output signal detector design for wireless MIMO communication systems , 2007, Proceedings of the 2007 international symposium on Low power electronics and design (ISLPED '07).

[30]  Georgios B. Giannakis,et al.  Reduced complexity closest point decoding algorithms for random lattices , 2006, IEEE Transactions on Wireless Communications.