Supramolecular Organization of the Repetitive Backbone Unit of the Streptococcus pneumoniae Pilus

Streptococcus pneumoniae, like many other Gram-positive bacteria, assembles long filamentous pili on their surface through which they adhere to host cells. Pneumococcal pili are formed by a backbone, consisting of the repetition of the major component RrgB, and two accessory proteins (RrgA and RrgC). Here we reconstruct by transmission electron microscopy and single particle image reconstruction method the three dimensional arrangement of two neighbouring RrgB molecules, which represent the minimal repetitive structural domain of the native pilus. The crystal structure of the D2-D4 domains of RrgB was solved at 1.6 Å resolution. Rigid-body fitting of the X-ray coordinates into the electron density map enabled us to define the arrangement of the backbone subunits into the S. pneumoniae native pilus. The quantitative fitting provide evidence that the pneumococcal pilus consists uniquely of RrgB monomers assembled in a head-to-tail organization. The presence of short intra-subunit linker regions connecting neighbouring domains provides the molecular basis for the intrinsic pilus flexibility.

[1]  R. Rappuoli,et al.  Molecular architecture of Streptococcus pneumoniae TIGR4 pili , 2009, The EMBO journal.

[2]  D. Thanassi,et al.  Linkage of T3 and Cpa pilins in the Streptococcus pyogenes M3 pilus , 2009, Molecular microbiology.

[3]  S. Dramsi,et al.  Dual Role for Pilus in Adherence to Epithelial Cells and Biofilm Formation in Streptococcus agalactiae , 2009, PLoS pathogens.

[4]  I. Margarit,et al.  Preventing bacterial infections with pilus-based vaccines: the group B streptococcus paradigm. , 2009, The Journal of infectious diseases.

[5]  E. Baker,et al.  Pili in Gram-negative and Gram-positive bacteria — structure, assembly and their role in disease , 2009, Cellular and Molecular Life Sciences.

[6]  J. Musser,et al.  Sequence variation in group A Streptococcus pili and association of pilus backbone types with lancefield T serotypes. , 2008, The Journal of infectious diseases.

[7]  S. Normark,et al.  Sortase-mediated assembly and surface topology of adhesive pneumococcal pili , 2008, Molecular microbiology.

[8]  G. Grandi,et al.  Sortase A Utilizes an Ancillary Protein Anchor for Efficient Cell Wall Anchoring of Pili in Streptococcus agalactiae , 2008, Infection and Immunity.

[9]  C. Donati,et al.  A Second Pilus Type in Streptococcus pneumoniae Is Prevalent in Emerging Serotypes and Mediates Adhesion to Host Cells , 2008, Journal of bacteriology.

[10]  E. Orlova,et al.  Structural analysis of the Saf pilus by electron microscopy and image processing. , 2008, Journal of Molecular Biology.

[11]  Eric Koesema,et al.  Combining the polymerase incomplete primer extension method for cloning and mutagenesis with microscreening to accelerate structural genomics efforts , 2008, Proteins.

[12]  W. Hanage,et al.  Streptococcus pneumoniae contains 3 rlrA pilus variants that are clonally related. , 2008, The Journal of infectious diseases.

[13]  R. Rappuoli,et al.  Pneumococcal Pili Are Composed of Protofilaments Exposing Adhesive Clusters of Rrg A , 2008, PLoS pathogens.

[14]  Anjali Mandlik,et al.  Pili in Gram-positive bacteria: assembly, involvement in colonization and biofilm development. , 2008, Trends in microbiology.

[15]  Edward N. Baker,et al.  Stabilizing Isopeptide Bonds Revealed in Gram-Positive Bacterial Pilus Structure , 2007, Science.

[16]  R. Rappuoli,et al.  RrgA is a pilus-associated adhesin in Streptococcus pneumoniae , 2007, Molecular microbiology.

[17]  S. Narayana,et al.  An IgG-like domain in the minor pilin GBS52 of Streptococcus agalactiae mediates lung epithelial cell adhesion. , 2007, Structure.

[18]  B. Hirst,et al.  Pili mediate specific adhesion of Streptococcus pyogenes to human tonsil and skin , 2007, Cellular microbiology.

[19]  Asis Das,et al.  Sortase-Catalyzed Assembly of Distinct Heteromeric Fimbriae in Actinomyces naeslundii , 2007, Journal of bacteriology.

[20]  V. Nizet,et al.  Group B Streptococcal Pilus Proteins Contribute to Adherence to and Invasion of Brain Microvascular Endothelial Cells , 2006, Journal of bacteriology.

[21]  R. Rappuoli,et al.  Streptococcus pneumoniae Pilus Subunits Protect Mice against Lethal Challenge , 2006, Infection and Immunity.

[22]  I. Margarit,et al.  Identification of novel genomic islands coding for antigenic pilus‐like structures in Streptococcus agalactiae , 2006, Molecular microbiology.

[23]  Rino Rappuoli,et al.  Pili in Gram-positive pathogens , 2006, Nature Reviews Microbiology.

[24]  S. Guadagnini,et al.  Assembly and role of pili in group B streptococci , 2006, Molecular microbiology.

[25]  A. Camilli,et al.  RrgA and RrgB Are Components of a Multisubunit Pilus Encoded by the Streptococcus pneumoniae rlrA Pathogenicity Islet , 2006, Infection and Immunity.

[26]  R. Rappuoli,et al.  A pneumococcal pilus influences virulence and host inflammatory responses. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[27]  H. Ton-That,et al.  Assembly of Distinct Pilus Structures on the Surface of Corynebacterium diphtheriae , 2006, Journal of bacteriology.

[28]  R. Lenski,et al.  Genomic divergence of Escherichia coli strains: evidence for horizontal transfer and variation in mutation rates. , 2005, International microbiology : the official journal of the Spanish Society for Microbiology.

[29]  G. Bensi,et al.  Group A Streptococcus produce pilus-like structures containing protective antigens and Lancefield T antigens , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[30]  R. Rappuoli,et al.  Genome Analysis Reveals Pili in Group B Streptococcus , 2005, Science.

[31]  Kevin Cowtan,et al.  research papers Acta Crystallographica Section D Biological , 2005 .

[32]  Conrad C. Huang,et al.  UCSF Chimera—A visualization system for exploratory research and analysis , 2004, J. Comput. Chem..

[33]  Geoffrey J. Barton,et al.  The Jalview Java alignment editor , 2004, Bioinform..

[34]  O. Schneewind,et al.  Assembly of pili on the surface of Corynebacterium diphtheriae , 2003, Molecular microbiology.

[35]  N. Grigorieff,et al.  Accurate determination of local defocus and specimen tilt in electron microscopy. , 2003, Journal of structural biology.

[36]  Marsha Lesley,et al.  Use of MindMapper® Software for Research Domain Mapping , 2002 .

[37]  Randy J Read,et al.  Electronic Reprint Biological Crystallography Phenix: Building New Software for Automated Crystallographic Structure Determination Biological Crystallography Phenix: Building New Software for Automated Crystallographic Structure Determination , 2022 .

[38]  A. Camilli,et al.  Large‐scale identification of serotype 4 Streptococcus pneumoniae virulence factors , 2002, Molecular microbiology.

[39]  Adam Godzik,et al.  Structural genomics of the Thermotoga maritima proteome implemented in a high-throughput structure determination pipeline , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[40]  W. Shi,et al.  Type IV Pilus-Dependent Motility and Its Possible Role in Bacterial Pathogenesis , 2002, Infection and Immunity.

[41]  J. Mattick Type IV pili and twitching motility. , 2002, Annual review of microbiology.

[42]  R J Read,et al.  Pushing the boundaries of molecular replacement with maximum likelihood. , 2003, Acta crystallographica. Section D, Biological crystallography.

[43]  T. Terwilliger Maximum-likelihood density modification using pattern recognition of structural motifs , 2001, Acta crystallographica. Section D, Biological crystallography.

[44]  S. Salzberg,et al.  Complete Genome Sequence of a Virulent Isolate of Streptococcus pneumoniae , 2001, Science.

[45]  M. Heel,et al.  Single-particle electron cryo-microscopy: towards atomic resolution , 2000, Quarterly Reviews of Biophysics.

[46]  W Chiu,et al.  EMAN: semiautomated software for high-resolution single-particle reconstructions. , 1999, Journal of structural biology.

[47]  Thomas C. Terwilliger,et al.  Reciprocal-space solvent flattening , 1999, Acta crystallographica. Section D, Biological crystallography.

[48]  P. Berggren,et al.  Cell Signaling by the Type IV Pili of Pathogenic Neisseria* , 1998, The Journal of Biological Chemistry.

[49]  Z. Otwinowski,et al.  Processing of X-ray diffraction data collected in oscillation mode. , 1997, Methods in enzymology.

[50]  M van Heel,et al.  A new generation of the IMAGIC image processing system. , 1996, Journal of structural biology.

[51]  Collaborative Computational,et al.  The CCP4 suite: programs for protein crystallography. , 1994, Acta crystallographica. Section D, Biological crystallography.

[52]  A. Brunger Free R value: a novel statistical quantity for assessing the accuracy of crystal structures. , 1992 .

[53]  A. Brünger Free R value: a novel statistical quantity for assessing the accuracy of crystal structures , 1992, Nature.

[54]  T. Saito,et al.  Cloning and expression of a pili gene of Corynebacterium renale in Escherichia coli. , 1990, Nihon juigaku zasshi. The Japanese journal of veterinary science.

[55]  M. van Heel Angular reconstitution: a posteriori assignment of projection directions for 3D reconstruction. , 1987, Ultramicroscopy.

[56]  M. Heel,et al.  Exact filters for general geometry three dimensional reconstruction , 1986 .

[57]  M van Heel,et al.  Multivariate statistical classification of noisy images (randomly oriented biological macromolecules). , 1984, Ultramicroscopy.