Quantum confinement in ZnO nanorods

The colloidal-synthesized ZnO nanorods with radius of 1.1±0.1nm (less than the bulk exciton Bohr radius, aB∼2.34nm) have been studied by optical methods combined with simple model calculations. The quantum confinement has been observed in these nanorods. The exciton binding energy is shown to be significantly enhanced due to one-dimensional confinement. Additionally, it is suggested that the green luminescence in ZnO involves free holes.

[1]  R. T. Senger,et al.  Optical properties of confined polaronic excitons in spherical ionic quantum dots , 2003 .

[2]  William L. Warren,et al.  Correlation between photoluminescence and oxygen vacancies in ZnO phosphors , 1996 .

[3]  D. C. Reynolds,et al.  Fine structure on the green band in ZnO , 2001 .

[4]  A. Zunger,et al.  Calculated natural band offsets of all II–VI and III–V semiconductors: Chemical trends and the role of cation d orbitals , 1998 .

[5]  Diane M. Steeves,et al.  Large-quantity free-standing ZnO nanowires , 2003 .

[6]  P. Mascher,et al.  Point defects and luminescence centres in zinc oxide and zinc oxide doped with manganese , 1992 .

[7]  Brown,et al.  Exciton binding energy in a quantum-well wire. , 1987, Physical review. B, Condensed matter.

[8]  Chii-Chang Chen,et al.  Interband optical transitions in GaP nanowires encapsulated in GaN nanotubes , 2003 .

[9]  Bixia Lin,et al.  Green luminescent center in undoped zinc oxide films deposited on silicon substrates , 2001 .

[10]  Bruce E. Gnade,et al.  Mechanisms behind green photoluminescence in ZnO phosphor powders , 1996 .

[11]  W. Roos,et al.  Ultraviolet-emitting ZnO nanowhiskers prepared by a vapor transport process on prestructured surfaces with self-assembled polymers , 2003 .

[12]  M. Yin,et al.  Zinc oxide quantum rods. , 2004, Journal of the American Chemical Society.

[13]  F. Rossi,et al.  Shape-independent scaling of excitonic confinement in realistic quantum wires , 1997, cond-mat/9704061.

[14]  Uri Banin,et al.  Size-dependent tunneling and optical spectroscopy of CdSe quantum rods. , 2002, Physical review letters.

[15]  Jürgen Christen,et al.  Bound exciton and donor–acceptor pair recombinations in ZnO , 2004 .

[16]  Degani,et al.  Exciton binding energy in quantum-well wires. , 1987, Physical review. B, Condensed matter.

[17]  F. A. Kröger,et al.  The Origin of the Fluorescence in Self‐Activated ZnS, CdS, and ZnO , 1954 .

[18]  P. H. Kasai,et al.  Electron Spin Resonance Studies of Donors and Acceptors in ZnO , 1963 .

[19]  A. Mascarenhas,et al.  Scaling of exciton binding energy and virial theorem in semiconductor quantum wells and wires , 1999 .

[20]  I. Lin,et al.  Characterization and Field‐Emission Properties of Needle‐like Zinc Oxide Nanowires Grown Vertically on Conductive Zinc Oxide Films , 2003 .

[21]  S. Studenikin,et al.  Fabrication of green and orange photoluminescent, undoped ZnO films using spray pyrolysis , 1998 .

[22]  R. Chang,et al.  Growth mechanism and properties of ZnO nanorods synthesized by plasma-enhanced chemical vapor deposition , 2004 .

[23]  Galbraith,et al.  Excitons and biexcitons in semiconductor quantum wires. , 1987, Physical review. B, Condensed matter.

[24]  M. Bawendi,et al.  Type-II quantum dots: CdTe/CdSe(core/shell) and CdSe/ZnTe(core/shell) heterostructures. , 2003, Journal of the American Chemical Society.

[25]  Y. Hwang,et al.  Photoluminescence of polycrystalline ZnO under different annealing conditions , 2003 .

[26]  Larry E. Halliburton,et al.  Role of copper in the green luminescence from ZnO crystals , 2002 .

[27]  D. C. Reynolds,et al.  Similarities in the bandedge and deep-centre photoluminescence mechanisms of ZnO and GaN , 1997 .

[28]  Yiying Wu,et al.  Room-Temperature Ultraviolet Nanowire Nanolasers , 2001, Science.