FROBENIUS ALGEBRAS AND AMBIDEXTROUS ADJUNCTIONS

In this paper we explain the relationship between Frobenius objects in monoidal categories and adjunctions in 2-categories. Specifically, we show that every Frobenius object in a monoidal category M arises from an ambijunction (simultaneous left and right adjoints) in some 2-category D into which M fully and faithfully embeds. Since a 2D topological quantum field theory is equivalent to a commutative Frobenius algebra, this result also shows that every 2D TQFT is obtained from an ambijunction in some 2-category. Our theorem is proved by extending the theory of adjoint monads to the context of an arbitrary 2-category and utilizing the free completion under Eilenberg- Moore objects. We then categorify this theorem by replacing the monoidal category M with a semistrict monoidal 2-category M , and replacing the 2-category D into which it embeds by a semistrict 3-category. To state this more powerful result, we must first define the notion of a 'Frobenius pseudomonoid', which categorifies that of a Frobenius object. We then define the notion of a 'pseudo ambijunction', categorifying that of an ambijunction. In each case, the idea is that all the usual axioms now hold only up to coherent isomorphism. Finally, we show that every Frobenius pseudomonoid in a semistrict monoidal 2-category arises from a pseudo ambijunction in some semistrict 3-category.

[1]  M. Lane Homologie des anneaux et des modules , 1979 .

[2]  Charles StreetBaltimore,et al.  TWO-DIMENSIONAL TOPOLOGICAL QUANTUM FIELD THEORIES AND FROBENIUS ALGEBRAS , 1996 .

[3]  Mikhail Khovanov A functor-valued invariant of tangles , 2002 .

[4]  H. Kleisli,et al.  Every standard construction is induced by a pair of adjoint functors , 1965 .

[5]  R. Street,et al.  Review of the elements of 2-categories , 1974 .

[6]  From subfactors to categories and topology. I. Frobenius algebras in and Morita equivalence of tensor categories , 2001, math/0111204.

[7]  S. Lack,et al.  The formal theory of monads II , 2002 .

[8]  Brian Day,et al.  Monoidal Bicategories and Hopf Algebroids , 1997 .

[9]  Ross Street,et al.  Frobenius monads and pseudomonoids , 2004 .

[10]  John W. Gray,et al.  Formal category theory: adjointness for 2-categories , 1974 .

[11]  R. Godement,et al.  Topologie algébrique et théorie des faisceaux , 1960 .

[12]  Albert Schwarz,et al.  Topological quantum field theories , 2000, hep-th/0011260.

[13]  Stephen Lack,et al.  A Coherent Approach to Pseudomonads , 2000 .

[14]  G. M. Kelly,et al.  Flexible limits for 2-categories , 1989 .

[15]  G. M. Kelly,et al.  Two-dimensional monad theory , 1989 .

[16]  U. Tillmann S‐Structures for k‐Linear Categories and the Definition of a Modular Functor , 1998, math/9802089.

[17]  G. M. Kelly,et al.  Structures defined by finite limits in the enriched context, I , 1982 .

[18]  Ross Street,et al.  Coherence of tricategories , 1995 .

[19]  Ross Street,et al.  Limits indexed by category-valued 2-functors , 1976 .

[20]  F. Marmolejo Doctrines Whose Structure Forms a Fully Faithful Adjoint String , 1997 .

[21]  Brian Day,et al.  Quantum categories, star autonomy, and quantum groupoids , 2003 .

[22]  F. William Lawvere,et al.  Ordinal sums and equational doctrines , 1969 .

[23]  G. M. Kelly,et al.  BASIC CONCEPTS OF ENRICHED CATEGORY THEORY , 2022, Elements of ∞-Category Theory.

[24]  Ross Street,et al.  Fibrations and Yoneda's lemma in a 2-category , 1974 .

[25]  S. Eilenberg,et al.  Adjoint functors and triples , 1965 .

[26]  F. Marmolejo,et al.  Distributive laws for pseudomonads. , 1999 .

[27]  A. Joyal,et al.  The geometry of tensor calculus, I , 1991 .

[28]  Frobenius algebras and planar open string topological field theories , 2005, math/0508349.