Solvent effect on the Seebeck coefficient of Fe2+/Fe3+ hydrogel thermogalvanic cells

The Seebeck coefficient of Fe2+/3+ thermogalvanic cells is inversely proportional to the donor number of organic solvent additives, which cause rearrangement of the Fe2+/3+ solvent shell.

[1]  Peiyi Wu,et al.  Double-network thermocells with extraordinary toughness and boosted power density for continuous heat harvesting , 2021, Joule.

[2]  B. Hu,et al.  Liquid-state thermocells: Opportunities and challenges for low-grade heat harvesting , 2021 .

[3]  Xun Shi,et al.  Thermopower and harvesting heat , 2021, Science.

[4]  Zhong Lin Wang,et al.  Thermosensitive crystallization–boosted liquid thermocells for low-grade heat harvesting , 2020, Science.

[5]  Y. Moritomo,et al.  Volume effect of organic solvent on electrochemical Seebeck coefficient of [Fe(CN)6]4−/[Fe(CN)6]3− in water , 2020, Japanese Journal of Applied Physics.

[6]  Hochun Lee,et al.  Unravelling ionic speciation and hydration structure of Fe(III/II) redox couples for thermoelectrochemical cells , 2020 .

[7]  Gang Chen,et al.  High thermoelectric cooling performance of n-type Mg3Bi2-based materials , 2019, Science.

[8]  T. Skotnicki,et al.  Thermoelectricity for IoT – A review , 2018, Nano Energy.

[9]  Teresa J. Feo,et al.  Structural absorption by barbule microstructures of super black bird of paradise feathers , 2018, Nature Communications.

[10]  Jun Zhou,et al.  Wearable Thermocells Based on Gel Electrolytes for the Utilization of Body Heat. , 2016, Angewandte Chemie.

[11]  R. Contreras,et al.  Gutmann's Donor Numbers Correctly Assess the Effect of the Solvent on the Kinetics of SN Ar Reactions in Ionic Liquids. , 2016, Chemistry.

[12]  Hongyao Zhou,et al.  Supramolecular Thermo-Electrochemical Cells: Enhanced Thermoelectric Performance by Host-Guest Complexation and Salt-Induced Crystallization. , 2016, Journal of the American Chemical Society.

[13]  Clemens Forman,et al.  Estimating the global waste heat potential , 2016 .

[14]  J. Heremans Thermoelectricity: The ugly duckling , 2014, Nature.

[15]  K. Goodson,et al.  Material and manufacturing cost considerations for thermoelectrics , 2014 .

[16]  Douglas R. MacFarlane,et al.  High Seebeck coefficient redox ionic liquid electrolytes for thermal energy harvesting , 2013 .

[17]  Naoki Tachikawa,et al.  Thermoelectromotive Force of Some Redox Couples in an Amide-type Room-temperature Ionic Liquid , 2009 .

[18]  Carmay Lim,et al.  Theory of Ionic Hydration: Insights from Molecular Dynamics Simulations and Experiment , 1999 .

[19]  T. I. Quickenden,et al.  A Review of Power Generation in Aqueous Thermogalvanic Cells , 1995 .

[20]  C. M. Flynn Hydrolysis of inorganic iron(III) salts , 1984 .

[21]  M. J. Weaver,et al.  Functional dependence upon ligand composition of the reaction entropies for some transition-metal redox couples containing mixed ligands , 1980 .

[22]  M. J. Weaver,et al.  Correlations between outer-sphere self-exchange rates and reaction entropies for some simple redox couples , 1980 .

[23]  M. J. Weaver,et al.  A survey of ligand effects upon the reaction entropies of some transition metal redox couples , 1979 .

[24]  W. Brostow Radial distribution function peaks and coordination numbers in liquids and in amorphous solids , 1977 .

[25]  V. Gutmann Empirical parameters for donor and acceptor properties of solvents , 1976 .

[26]  Ralph G. Pearson,et al.  HARD AND SOFT ACIDS AND BASES , 1963 .

[27]  W. M. Latimer,et al.  The Entropy of Aqueous Solutes , 1951 .

[28]  E. D. Eastman ELECTROMOTIVE FORCE OF ELECTROLYTIC THERMOCOUPLES AND THERMOCELLS AND THE ENTROPY OF TRANSFER AND ABSOLUTE ENTROPY OF IONS , 1928 .

[29]  T. Kang,et al.  High thermopower of ferri/ferrocyanide redox couple in organic-water solutions , 2017 .