Cognition-Enhanced, Self-optimizing Assembly Systems

Due to shorter product lifecycles and a rising demand for customization, flexibility and adaptability of assembly processes will become key elements in achieving sustainable success of industrial production in high-wage countries. Cognition-enhanced self-optimization as presented in this chapter has been identified as one major contributor to the enhancement of this flexibility and adaptability. The proposed approach to realize cognition-enhanced self-optimization for assembly systems in a broad range of application domains is to integrate dynamic behavior allowing reactions on disturbances and unforeseen events by dynamically adapting the target objectives of internal control loops. Unlike the approach of traditional closed control loops in which target objectives of an optimization process are determined in advance, this approach defines goal functions as dynamically adaptable throughout the process. The chapter concludes with two application examples—one dealing with the assembly of large-scale components (airplane structures) and the other with small component assembly (micro-optical elements)—presented to illustrate the industrial deployment of self-optimization for assembly tasks.

[1]  Zvi S. Roth,et al.  Fundamentals of Manipulator Calibration , 1991 .

[2]  Roger Y. Tsai,et al.  A new technique for fully autonomous and efficient 3D robotics hand/eye calibration , 1988, IEEE Trans. Robotics Autom..

[3]  F. Hayek The economic nature of the firm: The use of knowledge in society , 1945 .

[4]  Anthony S. Lee High-powered laser diode transmitter with integrated microlens for fast axis collimation , 1998, Photonics West.

[5]  Nga Hin Benjamin Fong,et al.  Modeling, Analysis,and Design of Responsive Manufacturing Systems Using Classical Control Theory , 2005 .

[6]  Dmitry N. Frolov,et al.  Providing target performance indices when automating the assembly of microscope objectives , 2010 .

[7]  Martin Riedel,et al.  A New Way of Grasping: PARAGRIP—The Fusion of Gripper and Robot , 2013 .

[8]  Jens P. Wulfsberg,et al.  Robot-based System for Handling of Aircraft Shell Parts☆ , 2014 .

[9]  David G. Woodward,et al.  Life cycle costing—Theory, information acquisition and application , 1997 .

[10]  Robert Schmitt,et al.  Cognitive Self-Optimization for Quality Control Loops – Potentials and Future Challenges in Research , 2014 .

[11]  Weihu Zhou,et al.  Calibration of Large Scale Coordinate Measuring System Based on Scanning Laser Plane , 2012 .

[12]  Fiorenzo Franceschini,et al.  Indoor GPS: system functionality and initial performance evaluation , 2008, Int. J. Manuf. Res..

[13]  Terje Kristoffer Lien,et al.  Mapping Energy Consumption for Industrial Robots , 2012 .

[14]  Paul G. Maropoulos,et al.  Verification of the indoor GPS system, by comparison with calibrated coordinates and by angular reference , 2012, J. Intell. Manuf..

[15]  Stefan Kurtenbach,et al.  Modular System with Varying Contact Elements for a Reconfigurable Parallel Robot , 2015 .

[16]  Bing Xu,et al.  A simple method for automatic cavity alignment of a solid-state laser , 2011 .

[17]  Ho-Soon Yang,et al.  Modeling Alignment Experiment Errors for Improved Computer-Aided Alignment , 2013 .

[18]  Benjamin Klöpper,et al.  Selbstoptimierende Systeme des Maschinenbaus – Definitionen, Anwendungen, Konzepte. , 2008 .

[19]  Jürgen Gausemeier,et al.  Zukunftsorientierte Unternehmensgestaltung , 2014 .

[21]  Jennifer Widom,et al.  Database Systems: The Complete Book , 2001 .

[22]  Christian Brecher,et al.  Self-optimizing assembly of laser systems , 2011, Prod. Eng..

[23]  Jian Yang,et al.  NONLINEAR NUMERICAL METHOD FOR THE STRUCTURE RELIABILITY PREDICTION OF TURBO MACHINE , 2004 .

[24]  Christian Brecher,et al.  Minimal-effort planning of active alignment processes for beam-shaping optics , 2015, Photonics West - Lasers and Applications in Science and Engineering.

[25]  J. Pierer,et al.  Automated assembly processes of high power single emitter diode lasers for 100W in 105 μm / NA 0.15 fiber module , 2011, LASE.

[26]  Mats Björkman,et al.  Industrial energy efficiency potentials: an assessment of three different robot concepts , 2017 .

[27]  Peter Steinke,et al.  Finite-Elemente-Methode , 2004 .

[28]  Fraunhofer-Institut für Fertigungstechnik und Angewandte Materialforsc Ifam Delfinhaut vermindert Reibungswiderstand , 2017, JOT Journal für Oberflächentechnik.

[29]  R. Poprawe,et al.  High power diode lasers : technology and applications , 2007 .

[30]  Payal Sharma,et al.  Demonstration of Active Laser Beam Stabilization in Closed Loop for Free Space Optical Receiver , 2015 .

[31]  S W Henderson,et al.  Fast resonance-detection technique for single-frequency operation of injection-seeded Nd:YAG lasers. , 1986, Optics letters.

[32]  Burkhard Corves,et al.  Improving the Accuracy of a Multi-Arm-Robot-System by Parameter Identification of the Single Arms , 2014 .

[33]  Martin Riedel,et al.  Grasp planning for a reconfigurable parallel robot with an underactuated arm structure , 2010 .

[34]  Daniel Roos,et al.  The machine that changed the world : the story of lean production , 1991 .

[35]  J. Hakkila,et al.  Comparison of active and passive fiber alignment techniques for multimode laser pigtailing , 2000, 2000 Proceedings. 50th Electronic Components and Technology Conference (Cat. No.00CH37070).

[36]  D.T. Pham,et al.  Innovative production machines and systems (I*PROMS): a network of excellence funded by the EU sixth framework programme , 2004, 2nd IEEE International Conference on Industrial Informatics, 2004. INDIN '04. 2004.

[37]  Tonghai Wu,et al.  Improvement on On-line Ferrograph Image Identification , 2010 .

[38]  Florian Jurecka,et al.  Robust Design Optimization Based on Metamodeling Techniques , 2007 .

[39]  Kevin W. Lyons,et al.  Virtual assembly using virtual reality techniques , 1997, Comput. Aided Des..

[40]  Robert Lang Technologiekombination durch Modularisierung , 2000 .

[41]  B. N. Ellis Safety and Environmental Problems of Cleaning Printed Circuit Assemblies , 1989 .

[42]  Peter Schreiber,et al.  Assembly processes for micro-optical beam transformation systems for high-power diode laser bars and stacks , 2000, SPIE MOEMS-MEMS.

[43]  Peter Schreiber,et al.  Assembly of fast-axis collimating lenses with high-power laser diode bars , 2000, Photonics West - Optoelectronic Materials and Devices.

[44]  Urs Eppelt,et al.  Meta-modeling for Manufacturing Processes , 2011, ICIRA.

[45]  Luca Mastrogiacomo,et al.  Sources of variability in the set-up of an indoor GPS , 2010, Int. J. Comput. Integr. Manuf..

[46]  Hirotaka Nakayama,et al.  Meta-Modeling in Multiobjective Optimization , 2008, Multiobjective Optimization.

[47]  Jack P. C. Kleijnen,et al.  A methodology for fitting and validating metamodels in simulation , 2000, Eur. J. Oper. Res..

[48]  Robert Schmitt,et al.  Cognitive Self-Optimization in Industrial Assembly , 2015 .

[49]  Zhigang Liu,et al.  A large scale 3D positioning method based on a network of rotating laser automatic theodolites , 2010, The 2010 IEEE International Conference on Information and Automation.

[50]  Robert Schmitt,et al.  Metrology assisted assembly of airplane structure elements , 2014 .

[51]  Christian Brecher,et al.  Self-optimizing approach for automated laser resonator alignment , 2012 .

[52]  Paul G. Maropoulos,et al.  Recent developments in large-scale dimensional metrology , 2009 .

[53]  Christian Habicht,et al.  Gestaltung wandlungsfähiger Produktionssysteme , 2002 .

[54]  Herbert Gross,et al.  Handbook of Optical Systems, Volume 1, Fundamentals of Technical Optics , 2005 .

[55]  C. Brecher,et al.  Automated assembly of VECSEL components , 2013, Photonics West - Lasers and Applications in Science and Engineering.

[56]  Juhani Heilala,et al.  Life cycle and unit-cost analysis for modular reconfigurable flexible light assembly systems , 2008 .

[57]  Ho-Soon Yang,et al.  Merit function regression method for efficient alignment control of two-mirror optical systems. , 2007, Optics express.

[58]  Dmitry N. Frolov,et al.  The concept of an automatic assembly line for microscope objectives, based on adaptive selection of their components , 2009 .

[59]  Robert Schmitt,et al.  Validation of iGPS as an external measurement system for cooperative robot positioning , 2013 .

[60]  Õrjan Ljungberg,et al.  Measurement of overall equipment effectiveness as a basis for TPM activities , 1998 .

[61]  Tolga Tekin,et al.  Automated assembly of fast-axis collimation (FAC) lenses for diode laser bar modules , 2009, LASE.

[62]  E. Westkämper,et al.  Product Life Cycle Costing Applied to Manufacturing Systems , 1998 .

[63]  Ping Yang,et al.  Automatic online laser resonator alignment based on machine vision: analysis , 2015, Optical Metrology.

[64]  Xueyou Yang,et al.  WORKSPACE MEASURING AND POSITIONING SYSTEM BASED ON ROTATING LASER PLANES , 2012 .

[65]  E. Abele,et al.  Zukunft der Produktion , 2011 .

[66]  Yang,et al.  Novel Method for Spatial Angle Measurement Based on Rotating Planar Laser Beams , 2010 .

[67]  Robert Ku Automated packaging platform for low-cost high-performance optical components manufacturing , 2004, SPIE/OSA/IEEE Asia Communications and Photonics.

[68]  Michael Goldfarb,et al.  Modeling Piezoelectric Stack Actuators for Control of Mlcromanlpulatlon , 2022 .

[69]  Yi Wang,et al.  Distributed Optical Sensor Network with Self-Monitoring Mechanism for Accurate Indoor Location and Coordinate Measurement , 2012 .

[70]  Ralf Koeppe,et al.  Robot-Robot and Human-Robot Cooperation in Commercial Robotics Applications , 2003, ISRR.

[71]  Josep Arasa,et al.  New strategy for misalignment calculation in optical systems using artificial neural networks , 2013 .

[72]  C. Brecher,et al.  Automated alignment of optical components for high-power diode lasers , 2012, Photonics West - Lasers and Applications in Science and Engineering.

[73]  B. Corves,et al.  Flexible Bauteilhandhabung auf Basis einer rekonfigurierbaren parallelkinematischen Struktur , 2014 .

[74]  John R. Koza,et al.  Genetic programming - on the programming of computers by means of natural selection , 1993, Complex adaptive systems.

[75]  D. Shonnard,et al.  Assessment of the Automobile Assembly Paint Process for Energy, Environmental, and Economic Improvement , 2004 .

[76]  Dominique Deblaise,et al.  A systematic analytical method for PKM stiffness matrix calculation , 2006, Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006..