Axiomatising Extended Computation Tree Logic

We present a sound and complete axiomatisation for extended computation tree logic. This language extends the standard computation tree logic CTL* by allowing path formulae to be expressed in linear time mu-calculus instead of linear time temporal logic. The main novelties in the current paper are an inference rule in the axiom system reflecting the limit closure of paths, a new strongly aconjunctive deterministic normal form for formulae, and the way the completeness proof takes advantage of techniques provided by automata theory.

[1]  E. Allen Emerson,et al.  Alternative Semantics for Temporal Logics , 1981, Theor. Comput. Sci..

[2]  Howard Barringer,et al.  Temporal Logic with Fixed Points , 1987, Temporal Logic in Specification.

[3]  Edmund M. Clarke,et al.  A Synthesis of Two Approaches for Verifying Finite State Concurrent Systems , 1989, J. Log. Comput..

[4]  Joseph Y. Halpern,et al.  Decision procedures and expressiveness in the temporal logic of branching time , 1982, STOC '82.

[5]  Saharon Shelah,et al.  On the temporal analysis of fairness , 1980, POPL '80.

[6]  E. Allen Emerson,et al.  An Automata Theoretic Decision Procedure for the Propositional Mu-Calculus , 1989, Inf. Comput..

[7]  Edmund M. Clarke,et al.  Characterizing Correctness Properties of Parallel Programs Using Fixpoints , 1980, ICALP.

[8]  Colin Stirling,et al.  Modal and temporal logics , 1993, LICS 1993.

[9]  Amir Pnueli,et al.  A really abstract concurrent model and its temporal logic , 1986, POPL '86.

[10]  Pierre Wolper Temporal Logic Can Be More Expressive , 1983, Inf. Control..

[11]  A. Prasad Sistla,et al.  Deciding Full Branching Time Logic , 1985, Inf. Control..

[12]  Robert McNaughton,et al.  Testing and Generating Infinite Sequences by a Finite Automaton , 1966, Inf. Control..

[13]  Pierre Wolper,et al.  Yet Another Process Logic (Preliminary Version) , 1983, Logic of Programs.

[14]  Moshe Y. Vardi A temporal fixpoint calculus , 1988, POPL '88.

[15]  E. Allen Emerson,et al.  Temporal and Modal Logic , 1991, Handbook of Theoretical Computer Science, Volume B: Formal Models and Sematics.

[16]  Roope Kaivola,et al.  Axiomatising Linear Time Mu-calculus , 1995, CONCUR.

[17]  David Walker,et al.  Local Model Checking in the Modal mu-Calculus , 1991, Theor. Comput. Sci..

[18]  E. Allen Emerson,et al.  Tree automata, mu-calculus and determinacy , 1991, [1991] Proceedings 32nd Annual Symposium of Foundations of Computer Science.

[19]  Igor Walukiewicz,et al.  Completeness of Kozen's axiomatisation of the propositional /spl mu/-calculus , 1995, Proceedings of Tenth Annual IEEE Symposium on Logic in Computer Science.

[20]  Dexter Kozen,et al.  RESULTS ON THE PROPOSITIONAL’p-CALCULUS , 2001 .

[21]  Andrzej Wlodzimierz Mostowski Hierarchies of Weak Automata and Weak Monadic Formulas , 1991, Theor. Comput. Sci..

[22]  Pierre Wolper,et al.  Reasoning About Infinite Computations , 1994, Inf. Comput..

[23]  Wolfgang Thomas Computation tree logic and regular omega-languages , 1988, REX Workshop.

[24]  Wolfgang Thomas,et al.  Automata on Infinite Objects , 1991, Handbook of Theoretical Computer Science, Volume B: Formal Models and Sematics.