Small but smart: MicroRNAs orchestrate atherosclerosis development and progression.

[1]  F. Pociot,et al.  MicroRNAs as regulators of beta‐cell function and dysfunction , 2016, Diabetes/metabolism research and reviews.

[2]  Samuel A Hatfield,et al.  Acute Loss of miR-221 and miR-222 in the Atherosclerotic Plaque Shoulder Accompanies Plaque Rupture , 2015, Stroke.

[3]  Eléonore M'baya-Moutoula,et al.  MicroRNA deregulation in symptomatic carotid plaque. , 2015, Journal of vascular surgery.

[4]  J. Kuiper,et al.  Inhibition of MicroRNA-494 Reduces Carotid Artery Atherosclerotic Lesion Development and Increases Plaque Stability. , 2015, Annals of surgery.

[5]  Pardis C Sabeti,et al.  Genome-wide identification of microRNAs regulating cholesterol and triglyceride homeostasis , 2015, Nature Medicine.

[6]  Guoqing Hu,et al.  MicroRNA-15b/16 Attenuates Vascular Neointima Formation by Promoting the Contractile Phenotype of Vascular Smooth Muscle Through Targeting YAP , 2015, Arteriosclerosis, thrombosis, and vascular biology.

[7]  R. de Cabo,et al.  Identification of miR-148a as a novel regulator of cholesterol metabolism , 2015, Nature Medicine.

[8]  I. Bièche,et al.  Thrombin receptor PAR-1 activation on endothelial progenitor cells enhances chemotaxis-associated genes expression and leukocyte recruitment by a COX-2-dependent mechanism , 2015, Angiogenesis.

[9]  A. Schober,et al.  Regulation of Csf1r and Bcl6 in Macrophages Mediates the Stage-Specific Effects of MicroRNA-155 on Atherosclerosis , 2015, Arteriosclerosis, thrombosis, and vascular biology.

[10]  Mary-Ellen Harper,et al.  Macrophage mitochondrial energy status regulates cholesterol efflux and is enhanced by anti‐miR33 in atherosclerosis , 2015, Circulation research.

[11]  F. Buttitta,et al.  Identification of microRNAs 758 and 33b as potential modulators of ABCA1 expression in human atherosclerotic plaques. , 2015, Nutrition, metabolism, and cardiovascular diseases : NMCD.

[12]  Bernadette A. Thomas,et al.  Global, regional, and national age–sex specific all-cause and cause-specific mortality for 240 causes of death, 1990–2013: a systematic analysis for the Global Burden of Disease Study 2013 , 2015, The Lancet.

[13]  C. Ramírez,et al.  Relevance of microRNA in metabolic diseases , 2014, Critical reviews in clinical laboratory sciences.

[14]  F. Cipollone,et al.  Role of microRNAs in the modulation of diabetic retinopathy , 2014, Progress in Retinal and Eye Research.

[15]  P. Tsao,et al.  miR-24 limits aortic vascular inflammation and murine abdominal aneurysm development , 2014, Nature Communications.

[16]  S. Karnik,et al.  Angiotensin II-regulated microRNA 483-3p directly targets multiple components of the renin-angiotensin system. , 2014, Journal of molecular and cellular cardiology.

[17]  P. Sethupathy,et al.  MicroRNA-223 coordinates cholesterol homeostasis , 2014, Proceedings of the National Academy of Sciences.

[18]  Jason L. Johnson,et al.  MicroRNA-24 Regulates Macrophage Behavior and Retards Atherosclerosis , 2014, Arteriosclerosis, thrombosis, and vascular biology.

[19]  P. Vardas,et al.  Differential expression of vascular smooth muscle-modulating microRNAs in human peripheral blood mononuclear cells: novel targets in essential hypertension , 2014, Journal of Human Hypertension.

[20]  M. Mayr,et al.  Long-term therapeutic silencing of miR-33 increases circulating triglyceride levels and hepatic lipid accumulation in mice , 2014, EMBO molecular medicine.

[21]  H. Jo,et al.  Prevention of Abdominal Aortic Aneurysm by Anti–MicroRNA-712 or Anti–MicroRNA-205 in Angiotensin II–Infused Mice , 2014, Arteriosclerosis, thrombosis, and vascular biology.

[22]  F. Buttitta,et al.  Plasma exosome microRNA profiling unravels a new potential modulator of adiponectin pathway in diabetes: effect of glycemic control. , 2014, The Journal of clinical endocrinology and metabolism.

[23]  S. Juo,et al.  Let-7g improves multiple endothelial functions through targeting transforming growth factor-beta and SIRT-1 signaling. , 2014, Journal of the American College of Cardiology.

[24]  X. Cong,et al.  MicroRNA-21 is a unique signature associated with coronary plaque instability in humans by regulating matrix metalloproteinase-9 via reversion-inducing cysteine-rich protein with Kazal motifs. , 2014, Experimental and molecular pathology.

[25]  M. Fu,et al.  MicroRNA-155 Deficiency Results in Decreased Macrophage Inflammation and Attenuated Atherogenesis in Apolipoprotein E–Deficient Mice , 2014, Arteriosclerosis, thrombosis, and vascular biology.

[26]  F. Kiessling,et al.  MicroRNA-126-5p promotes endothelial proliferation and limits atherosclerosis by suppressing Dlk1 , 2014, Nature Medicine.

[27]  S. Boulkroun,et al.  Inhibition of MicroRNA-92a Prevents Endothelial Dysfunction and Atherosclerosis in Mice , 2014, Circulation research.

[28]  Sophie Rome,et al.  Profiling of Circulating MicroRNAs Reveals Common MicroRNAs Linked to Type 2 Diabetes That Change With Insulin Sensitization , 2014, Diabetes Care.

[29]  A. Tedgui,et al.  Microvesicles as Cell–Cell Messengers in Cardiovascular Diseases , 2014, Circulation research.

[30]  F. Sánchez‐Madrid,et al.  Sumoylated hnRNPA2B1 controls the sorting of miRNAs into exosomes through binding to specific motifs , 2013, Nature Communications.

[31]  Ana Kozomara,et al.  miRBase: annotating high confidence microRNAs using deep sequencing data , 2013, Nucleic Acids Res..

[32]  Jianxin Sun,et al.  MicroRNA-663 Regulates Human Vascular Smooth Muscle Cell Phenotypic Switch and Vascular Neointimal Formation , 2013, Circulation research.

[33]  K. Croce,et al.  Systemic Delivery of MicroRNA-181b Inhibits Nuclear Factor-&kgr;B Activation, Vascular Inflammation, and Atherosclerosis in Apolipoprotein E–Deficient Mice , 2013, Circulation research.

[34]  B. Morris,et al.  A Novel Interaction Between Sympathetic Overactivity and Aberrant Regulation of Renin by miR-181a in BPH/2J Genetically Hypertensive Mice , 2013, Hypertension.

[35]  M. V. van Zandvoort,et al.  Endothelial Junctional Adhesion Molecule-A Guides Monocytes Into Flow-Dependent Predilection Sites of Atherosclerosis , 2013, Circulation.

[36]  S. Kauppinen,et al.  Treatment of HCV infection by targeting microRNA. , 2013, The New England journal of medicine.

[37]  A. Schober,et al.  The microRNA-342-5p Fosters Inflammatory Macrophage Activation Through an Akt1- and microRNA-155–Dependent Pathway During Atherosclerosis , 2013, Circulation.

[38]  A. Lusis,et al.  Anti-miR-33 Therapy Does Not Alter the Progression of Atherosclerosis in Low-Density Lipoprotein Receptor-Deficient Mice , 2013, Arteriosclerosis, thrombosis, and vascular biology.

[39]  F. Cipollone,et al.  Overexpression of microRNA-145 in atherosclerotic plaques from hypertensive patients , 2013, Expert opinion on therapeutic targets.

[40]  Takeshi Kimura,et al.  MicroRNA-33 Deficiency Reduces the Progression of Atherosclerotic Plaque in ApoE−/− Mice , 2012, Journal of the American Heart Association.

[41]  F. Kiessling,et al.  MicroRNA-155 promotes atherosclerosis by repressing Bcl6 in macrophages. , 2012, The Journal of clinical investigation.

[42]  M. Al-Omran,et al.  MicroRNA-145 Targeted Therapy Reduces Atherosclerosis , 2012, Circulation.

[43]  Hsien-Da Huang,et al.  MicroRNA-122 plays a critical role in liver homeostasis and hepatocarcinogenesis. , 2012, The Journal of clinical investigation.

[44]  L. Kobzik,et al.  MicroRNA-181b regulates NF-κB-mediated vascular inflammation. , 2012, The Journal of clinical investigation.

[45]  B. Schroen,et al.  Hematopoietic miR155 Deficiency Enhances Atherosclerosis and Decreases Plaque Stability in Hyperlipidemic Mice , 2012, PloS one.

[46]  M. Hristov,et al.  microRNA expression signatures and parallels between monocyte subsets and atherosclerotic plaque in humans , 2012, Thrombosis and Haemostasis.

[47]  M. Mayr,et al.  Atheroprotective communication between endothelial cells and smooth muscle cells through miRNAs , 2012, Nature Cell Biology.

[48]  A. Tijsen,et al.  Circulating microRNAs: novel biomarkers and extracellular communicators in cardiovascular disease? , 2012, Circulation research.

[49]  Gianpaolo Zerbini,et al.  MiR‐133a regulates collagen 1A1: Potential role of miR‐133a in myocardial fibrosis in angiotensin II‐dependent hypertension , 2012, Journal of cellular physiology.

[50]  E. Olson,et al.  Control of glucose homeostasis and insulin sensitivity by the Let-7 family of microRNAs , 2011, Proceedings of the National Academy of Sciences.

[51]  B. Morris,et al.  Gene Expression Profiling Reveals Renin mRNA Overexpression in Human Hypertensive Kidneys and a Role for MicroRNAs , 2011, Hypertension.

[52]  Stefanie Dimmeler,et al.  Circulating microRNAs: biomarkers or mediators of cardiovascular diseases? , 2011, Arteriosclerosis, thrombosis, and vascular biology.

[53]  T. Lehtimäki,et al.  miR-21, miR-210, miR-34a, and miR-146a/b are up-regulated in human atherosclerotic plaques in the Tampere Vascular Study. , 2011, Atherosclerosis.

[54]  A. Dávalos,et al.  MicroRNA-758 Regulates Cholesterol Efflux Through Posttranscriptional Repression of ATP-Binding Cassette Transporter A1 , 2011, Arteriosclerosis, thrombosis, and vascular biology.

[55]  M. Vinciguerra,et al.  MicroRNA-29 in Aortic Dilation: Implications for Aneurysm Formation , 2011, Circulation research.

[56]  M. Mayr,et al.  Profiling of circulating microRNAs: from single biomarkers to re-wired networks , 2011, Cardiovascular research.

[57]  D. Catalucci,et al.  MicroRNA-133 Controls Vascular Smooth Muscle Cell Phenotypic Switch In Vitro and Vascular Remodeling In Vivo , 2011, Circulation research.

[58]  K. Moore,et al.  Inhibition of miR-33a/b in non-human primates raises plasma HDL and reduces VLDL triglycerides , 2011, Nature.

[59]  Ayellet V. Segrè,et al.  The Lin28/let-7 Axis Regulates Glucose Metabolism , 2011, Cell.

[60]  A. Marchetti,et al.  A Unique MicroRNA Signature Associated With Plaque Instability in Humans , 2011, Stroke.

[61]  Hsien-Da Huang,et al.  Flow-Dependent Regulation of Kruppel-Like Factor 2 Is Mediated by MicroRNA-92a. , 2011, Circulation.

[62]  R. Knight,et al.  miR-146a is modulated in human endothelial cell with aging. , 2011, Atherosclerosis.

[63]  Arunmozhiarasi Armugam,et al.  MicroRNA 144 Impairs Insulin Signaling by Inhibiting the Expression of Insulin Receptor Substrate 1 in Type 2 Diabetes Mellitus , 2011, PloS one.

[64]  Xueqing Yu,et al.  Signature microRNA Expression Profile of Essential Hypertension and Its Novel Link to Human Cytomegalovirus Infection , 2011, Circulation.

[65]  Aaron N. Chang,et al.  Antagonism of miR-33 in mice promotes reverse cholesterol transport and regression of atherosclerosis. , 2011, The Journal of clinical investigation.

[66]  M. Zavolan,et al.  MicroRNAs 103 and 107 regulate insulin sensitivity , 2011, Nature.

[67]  Y. Marcel,et al.  Autophagy regulates cholesterol efflux from macrophage foam cells via lysosomal acid lipase. , 2011, Cell metabolism.

[68]  R. Krams,et al.  Disturbed Blood Flow Induces RelA Expression via c-Jun N-Terminal Kinase 1: A Novel Mode of NF-&kgr;B Regulation That Promotes Arterial Inflammation , 2011, Circulation research.

[69]  P. Tsao,et al.  MicroRNA‐26a is a novel regulator of vascular smooth muscle cell function , 2011, Journal of cellular physiology.

[70]  E. Kroh,et al.  Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma , 2011, Proceedings of the National Academy of Sciences.

[71]  Min Xu,et al.  Significance of serum microRNAs in pre-diabetes and newly diagnosed type 2 diabetes: a clinical study , 2011, Acta Diabetologica.

[72]  P. Palatini,et al.  Interplay between miR-155, AT1R A1166C polymorphism, and AT1R expression in young untreated hypertensives. , 2011, American journal of hypertension.

[73]  K. Vickers,et al.  MicroRNAs are Transported in Plasma and Delivered to Recipient Cells by High-Density Lipoproteins , 2011, Nature Cell Biology.

[74]  Cheng-chao Sun,et al.  MicroRNA-155 Silencing Enhances Inflammatory Response and Lipid Uptake in Oxidized Low-Density Lipoprotein-Stimulated Human THP-1 Macrophages , 2010, Journal of Investigative Medicine.

[75]  Jessica A. Weber,et al.  The microRNA spectrum in 12 body fluids. , 2010, Clinical chemistry.

[76]  P. Oettgen,et al.  Ets-1 and Ets-2 Regulate the Expression of MicroRNA-126 in Endothelial Cells , 2010, Arteriosclerosis, thrombosis, and vascular biology.

[77]  M. Mayr,et al.  Plasma MicroRNA Profiling Reveals Loss of Endothelial MiR-126 and Other MicroRNAs in Type 2 Diabetes , 2010, Circulation research.

[78]  Jennifer J. Siu,et al.  Up-Regulated Pancreatic Tissue MicroRNA-375 Associates With Human Type 2 Diabetes Through &bgr;-Cell Deficit and Islet Amyloid Deposition , 2010, Pancreas.

[79]  J. Kawai,et al.  Induction of microRNAs, mir-155, mir-222, mir-424 and mir-503, promotes monocytic differentiation through combinatorial regulation , 2010, Leukemia.

[80]  M. Civelek,et al.  MicroRNA-10a regulation of proinflammatory phenotype in athero-susceptible endothelium in vivo and in vitro , 2010, Proceedings of the National Academy of Sciences.

[81]  A. Tall,et al.  ABCA1 and ABCG1 Protect Against Oxidative Stress–Induced Macrophage Apoptosis During Efferocytosis , 2010, Circulation research.

[82]  K. Moore,et al.  MiR-33 Contributes to the Regulation of Cholesterol Homeostasis , 2010, Science.

[83]  Y. Matsuki,et al.  Secretory Mechanisms and Intercellular Transfer of MicroRNAs in Living Cells*♦ , 2010, The Journal of Biological Chemistry.

[84]  Y. Suárez,et al.  Cutting Edge: TNF-Induced MicroRNAs Regulate TNF-Induced Expression of E-Selectin and Intercellular Adhesion Molecule-1 on Human Endothelial Cells: Feedback Control of Inflammation , 2009, The Journal of Immunology.

[85]  M. Hristov,et al.  Delivery of MicroRNA-126 by Apoptotic Bodies Induces CXCL12-Dependent Vascular Protection , 2009, Science Signaling.

[86]  G. Melino,et al.  MicroRNA 217 Modulates Endothelial Cell Senescence via Silent Information Regulator 1 , 2009, Circulation.

[87]  E. Olson,et al.  MicroRNAs miR-143 and miR-145 modulate cytoskeletal dynamics and responsiveness of smooth muscle cells to injury. , 2009, Genes & development.

[88]  E. Abraham,et al.  miR-147, a microRNA that is induced upon Toll-like receptor stimulation, regulates murine macrophage inflammatory responses , 2009, Proceedings of the National Academy of Sciences.

[89]  Johanna Schneider,et al.  Acquisition of the contractile phenotype by murine arterial smooth muscle cells depends on the Mir143/145 gene cluster. , 2009, The Journal of clinical investigation.

[90]  D. Iliopoulos,et al.  The kinase Akt1 controls macrophage response to lipopolysaccharide by regulating microRNAs. , 2009, Immunity.

[91]  Chunxiang Zhang,et al.  MicroRNA-145, a Novel Smooth Muscle Cell Phenotypic Marker and Modulator, Controls Vascular Neointimal Lesion Formation , 2009, Circulation research.

[92]  Deepak Srivastava,et al.  miR-145 and miR-143 Regulate Smooth Muscle Cell Fate Decisions , 2009, Nature.

[93]  Ting Chen,et al.  MicroRNA-125a-5p partly regulates the inflammatory response, lipid uptake, and ORP9 expression in oxLDL-stimulated monocyte/macrophages. , 2009, Cardiovascular research.

[94]  Qingbo Xu,et al.  Sustained activation of XBP1 splicing leads to endothelial apoptosis and atherosclerosis development in response to disturbed flow , 2009, Proceedings of the National Academy of Sciences.

[95]  Chunxiang Zhang,et al.  A Necessary Role of miR-221 and miR-222 in Vascular Smooth Muscle Cell Proliferation and Neointimal Hyperplasia , 2009, Circulation research.

[96]  D. Bartel MicroRNAs: Target Recognition and Regulatory Functions , 2009, Cell.

[97]  W. Rottbauer,et al.  MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts , 2008, Nature.

[98]  A. Newby Metalloproteinase Expression in Monocytes and Macrophages and its Relationship to Atherosclerotic Plaque Instability , 2008, Arteriosclerosis, thrombosis, and vascular biology.

[99]  N. Baroukh,et al.  miR-375 Targets 3′-Phosphoinositide–Dependent Protein Kinase-1 and Regulates Glucose-Induced Biological Responses in Pancreatic β-Cells , 2008, Diabetes.

[100]  Daniel B. Martin,et al.  Circulating microRNAs as stable blood-based markers for cancer detection , 2008, Proceedings of the National Academy of Sciences.

[101]  Jianqiang Ding,et al.  Divergent roles of endothelial NF-κB in multiple organ injury and bacterial clearance in mouse models of sepsis , 2008, The Journal of experimental medicine.

[102]  Qingbo Xu,et al.  Rapid Endothelial Turnover in Atherosclerosis-Prone Areas Coincides With Stem Cell Repair in Apolipoprotein E–Deficient Mice , 2008, Circulation.

[103]  Aadel A. Chaudhuri,et al.  Sustained expression of microRNA-155 in hematopoietic stem cells causes a myeloproliferative disorder , 2008, The Journal of experimental medicine.

[104]  Joshua T. Mendell,et al.  MicroRNA-126 regulates endothelial expression of vascular cell adhesion molecule 1 , 2008, Proceedings of the National Academy of Sciences.

[105]  Michael T. McManus,et al.  MicroRNA Expression Is Required for Pancreatic Islet Cell Genesis in the Mouse , 2007, Diabetes.

[106]  Praveen Sethupathy,et al.  Human microRNA-155 on chromosome 21 differentially interacts with its polymorphic target in the AGTR1 3' untranslated region: a mechanism for functional single-nucleotide polymorphisms related to phenotypes. , 2007, American journal of human genetics.

[107]  Chunxiang Zhang,et al.  MicroRNA Expression Signature and Antisense-Mediated Depletion Reveal an Essential Role of MicroRNA in Vascular Neointimal Lesion Formation , 2007, Circulation research.

[108]  John J Rossi,et al.  MicroRNA-192 in diabetic kidney glomeruli and its function in TGF-β-induced collagen expression via inhibition of E-box repressors , 2007, Proceedings of the National Academy of Sciences.

[109]  D. Baltimore,et al.  NF-κB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses , 2006, Proceedings of the National Academy of Sciences.

[110]  Mark Graham,et al.  miR-122 regulation of lipid metabolism revealed by in vivo antisense targeting. , 2006, Cell metabolism.

[111]  N. Rajewsky,et al.  A pancreatic islet-specific microRNA regulates insulin secretion , 2004, Nature.

[112]  Georg Kraal,et al.  Inhibition of NF-kappaB activation in macrophages increases atherosclerosis in LDL receptor-deficient mice. , 2003, The Journal of clinical investigation.

[113]  J. Holtz,et al.  Shear stress-dependent expression of apoptosis-regulating genes in endothelial cells. , 2000, Biochemical and biophysical research communications.

[114]  M. Cybulsky,et al.  The NF-kappa B signal transduction pathway in aortic endothelial cells is primed for activation in regions predisposed to atherosclerotic lesion formation. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[115]  Y. T. Lee,et al.  Oxidized low-density lipoproteins inhibit endothelial cell proliferation by suppressing basic fibroblast growth factor expression. , 2000, Circulation.

[116]  S. Nishikawa,et al.  Intraperitoneal administration of anti-c-fms monoclonal antibody prevents initial events of atherogenesis but does not reduce the size of advanced lesions in apolipoprotein E-deficient mice. , 1999, Circulation.

[117]  L. Tiret,et al.  Angiotensin II type 1 receptor gene polymorphisms in human essential hypertension. , 1994, Hypertension.

[118]  K. Vickers,et al.  Small RNA Overcomes the Challenges of Therapeutic Targeting of Microsomal Triglyceride Transfer Protein , 2022 .