A comparative study of fuzzy logic controllers for autonomous robots.

This paper presents the results from an experimental comparison of a number of fuzzy logic controllers performing mobile robot navigation. An experiment is described which requires the robot to complete a complex, measurable navigational task. The world's first generalised type-2 fuzzy logic controller is compared to a type-1 and a type-2 interval controller. Visual and statistical analyses show that the generalised type-2 fuzzy controller gives a better performance in consistency and smoothness. The impact of this paper comes primarily from the rigorous use of statistical analysis in mobile robot navigation.

[1]  Hani Hagras,et al.  A hierarchical type-2 fuzzy logic control architecture for autonomous mobile robots , 2004, IEEE Transactions on Fuzzy Systems.

[2]  Robert Ivor John,et al.  A new and efficient method for the type-2 meet operation , 2004, 2004 IEEE International Conference on Fuzzy Systems (IEEE Cat. No.04CH37542).

[3]  Lotfi A. Zadeh,et al.  The concept of a linguistic variable and its application to approximate reasoning-III , 1975, Inf. Sci..

[4]  Robert John,et al.  Type-2 fuzzy sets for modelling nursing intuition , 2001, Proceedings Joint 9th IFSA World Congress and 20th NAFIPS International Conference (Cat. No. 01TH8569).

[5]  Robert Ivor John,et al.  Neuro-fuzzy clustering of radiographic tibia image data using type 2 fuzzy sets , 2000, Inf. Sci..

[6]  Jerry M. Mendel,et al.  Type-2 fuzzy logic systems , 1999, IEEE Trans. Fuzzy Syst..

[7]  Jorge Posada,et al.  A Type-2 Fuzzy Controller for Tracking Mobile Objects in the Context of Robotic Soccer Games , 2005, The 14th IEEE International Conference on Fuzzy Systems, 2005. FUZZ '05..

[8]  Robert Ivor John,et al.  Geometric Interval Type-2 Fuzzy Systems , 2005, EUSFLAT Conf..

[9]  J. Mendel Uncertain Rule-Based Fuzzy Logic Systems: Introduction and New Directions , 2001 .

[10]  Robert Ivor John,et al.  Geometric Type-1 and Type-2 Fuzzy Logic Systems , 2007, IEEE Transactions on Fuzzy Systems.

[11]  Simon Coupland,et al.  Fuzzy logic and computational geometry , 2004 .

[12]  Jerry M. Mendel,et al.  MPEG VBR video traffic modeling and classification using fuzzy technique , 2001, IEEE Trans. Fuzzy Syst..

[13]  Jerry M. Mendel,et al.  Applications of Type-2 Fuzzy Logic Systems to Forecasting of Time-series , 1999, Inf. Sci..

[14]  Jerry M. Mendel,et al.  Type-2 fuzzy sets made simple , 2002, IEEE Trans. Fuzzy Syst..

[15]  Jerry M. Mendel,et al.  Equalization of nonlinear time-varying channels using type-2 fuzzy adaptive filters , 2000, IEEE Trans. Fuzzy Syst..

[16]  Oscar Castillo,et al.  Intelligent control of non-linear dynamic plants using type-2 fuzzy logic and neural networks , 2002, 2002 Annual Meeting of the North American Fuzzy Information Processing Society Proceedings. NAFIPS-FLINT 2002 (Cat. No. 02TH8622).

[17]  Lotfi A. Zadeh,et al.  The Concepts of a Linguistic Variable and its Application to Approximate Reasoning , 1975 .

[18]  Robert Ivor John,et al.  Towards More Efficient Type-2 Fuzzy Logic Systems , 2005, The 14th IEEE International Conference on Fuzzy Systems, 2005. FUZZ '05..

[19]  Carlos Andrés Peña-Reyes,et al.  Hardware architecture and FPGA implementation of a type-2 fuzzy system , 2004, GLSVLSI '04.

[20]  Hani Hagras,et al.  Embedded Type-2 FLC for Real-Time Speed Control of Marine and Traction Diesel Engines , 2005, The 14th IEEE International Conference on Fuzzy Systems, 2005. FUZZ '05..

[21]  Jerry M. Mendel,et al.  Centroid of a type-2 fuzzy set , 2001, Inf. Sci..

[22]  Dongrui Wu,et al.  A type-2 fuzzy logic controller for the liquid-level process , 2004, 2004 IEEE International Conference on Fuzzy Systems (IEEE Cat. No.04CH37542).

[23]  Jerry M. Mendel,et al.  Interval type-2 fuzzy logic systems , 2000, Ninth IEEE International Conference on Fuzzy Systems. FUZZ- IEEE 2000 (Cat. No.00CH37063).

[24]  Jerry M. Mendel,et al.  Operations on type-2 fuzzy sets , 2001, Fuzzy Sets Syst..

[25]  R. John Type 2 fuzzy sets for knowledge representation and inferencing , 1998, 1998 IEEE International Conference on Fuzzy Systems Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98CH36228).

[26]  R. John,et al.  A novel sampling method for type-2 defuzzification , 2005 .

[27]  Hani Hagras,et al.  A type-2 fuzzy embedded agent for ubiquitous computing environments , 2004, 2004 IEEE International Conference on Fuzzy Systems (IEEE Cat. No.04CH37542).

[28]  Robert Ivor John,et al.  Type 2 Fuzzy Sets: An Appraisal of Theory and Applications , 1998, Int. J. Uncertain. Fuzziness Knowl. Based Syst..

[29]  Antonio García,et al.  Pro-Two: a hardware based platform for real time type-2 fuzzy inference , 2004, 2004 IEEE International Conference on Fuzzy Systems (IEEE Cat. No.04CH37542).